首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(17):2690-2704
A disposable immunosensor for the detection of Escherichia coli O157:H7 based on a multiwalled carbon nanotube–sodium alginate nanocomposite film was constructed. The nanocomposite was placed on a screen-printed carbon electrode, and horseradish peroxidase-labeled antibodies were immobilized to E. coli O157:H7 on the modified electrode to construct the immunosensor. The modification procedure was characterized by atomic force microscopy and cyclic voltammetry. Under optimal conditions, the proposed immunosensor exhibited good electrochemical sensitivity to E. coli O157:H7 in a concentration range of 103–1010 cfu/mL, with a relatively low detection limit of 2.94 × 102 cfu/mL (S/N = 3). This immunosensor exhibited satisfactory specificity, reproducibility, stability, and accuracy, making it a potential alternative tool for early assessment of E. coli O157:H7.  相似文献   

2.
This work demonstrates the detection of E. coli using a 2-dimensional photosensor array biochip which is efficiently equipped with a microfluidics sample/reagent delivery system for on-chip monitoring of bioassays. The biochip features a 4 × 4 array of independently operating photodiodes that are integrated along with amplifiers, discriminators and logic circuitry on a single platform. The microfluidics system includes a single 0.4 mL reaction chamber which houses a sampling platform that selectively captures detection probes from a sample through the use of immobilized bioreceptors. The independently operating photodiodes allow simultaneous monitoring of multiple samples. In this study the sampling platform is a cellulosic membrane that is exposed to E. coli organisms and subsequently analyzed using a sandwich immunoassay involving a Cy5-labeled antibody probe. The combined effectiveness of the integrated circuit (IC) biochip and the immunoassay is evaluated for assays performed both by conventional laboratory means followed by detection with the IC biochip, and through the use of the microfluidics system for on-chip detection. Highlights of the studies show that the biochip has a linear dynamic range of three orders of magnitude observed for conventional assays, and can detect 20 E. coli organisms. Selective detection of E. coli in a complex medium, milk diluent, is also reported for both off-chip and on-chip assays. Received: 13 October 2000 / Revised: 13 November 2000 / Accepted: 13 November 2000  相似文献   

3.
An electrochemical biosensor for the specific detection of short DNA sequences from the E. coli pathogen is described. This hybridization device relies on the immobilization of a 25-mer oligonucleotide probe, from the E. coli lacZ gene, onto a screen-printed carbon electrode. Chronopotentiometric detection of the Co(bpy)3+3 indicator is used for monitoring the hybridization event. Numerous variables of the assay protocol, including those of the probe immobilization step, the hybridization event, and the indicator association/detection, are characterized and optimized. Hybridization times of 2- and 30-min are sufficient for detecting 300- and 50 ng/mL, respectively, of the E. coli DNA target. Applicability to analysis of untreated environmental water samples is illustrated. Such single-use electrochemical sensors hold great promise for decentralized environmental and food testing for the E. coli pathogen.  相似文献   

4.
A biosensor for the determination of Escherichia coli using graphene oxide on the crystal (gold) surface was fabricated by the drop cast method. The E. coli sensing characteristics of the biosensor, such as a change in frequency, were examined by exposing the graphene oxide-coated crystal to various functionalization steps at room temperature. Graphene oxide was functionalized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride–N-hydroxysuccinimide to covalently conjugate β-galactosidase antibodies to recognize microorganisms that produce this material. Frequency changes in the quartz crystal microbalance are dependent on the absorbed/desorbed masses of the analytes on the functional surface of the crystal. In addition, various characterization techniques were optimized for the morphological elemental analysis of the nanocoating that included field emission scanning electron microscopy, scanning electron microscopy, and electron diffraction spectroscopy. This surface was used in a quartz crystal microbalance nanoplatform for the rapid, sensitive, and label-free detection of E. coli. Under optimal conditions, the frequency of quartz crystal microbalance biosensor was directly proportional to the concentration of antigen with a dynamic range from 0.5?mg?mL?1 to 5?ng?mL?1 and a minimum detection limit of 5?ng?mL?1, and a sensitivity of 0.037?Hz?g?ml?1?cm?1. These results show that the graphene oxide-coated crystal had excellent performance for E. coli. This research reports a simple, inexpensive, and effective highly stable biosensor using graphene oxide as the sensing medium.  相似文献   

5.
铂纳米颗粒修饰电极对大肠杆菌的电化学快速检测   总被引:2,自引:0,他引:2  
本文采用了电化学沉积法制备了铂纳米颗粒化学修饰电极(PtNP/GCE),并将它应用于大肠杆菌的检测。原理是基于检测大肠杆菌溶液中酶与底物的反应产物,对氨基酚,实现了对大肠杆菌的快速检测。采用了铂纳米颗粒修饰电极,并对检测系统进行优化,提高大肠杆菌的检测灵敏度。大肠杆菌浓度在50—1.0×105cfu/ml与响应电流成良好的线性关系,最低检测限为20 cfu/ml,检测时间在4个小时以内。与传统方法相比,该电化学方法能很好地满足食品安全、环境监控和临床医学等领域中快速检测的要求。  相似文献   

6.
A photoactive float was fabricated with the modified titania to cause a feasible disinfection of water, contaminated with E. coli. The commercially available titania was doped with neodymium by pulverization technique to enhance its activity in sunlight and a multiapproach technique was used to evaluate the extended efficiency of the doped sample. X‐ray diffraction patterns depicted the retention of anatase phase on doping and the existence of neodymium was confirmed by the energy dispersive atomic X‐ray analysis and the X‐ray photoelectron spectroscopy. Transmission electron microscopy and Bruner–Emmett–Teller analysis depicted a marginal increase in the particle size and a decrease in the surface area, respectively. Doping induces semiconductor behavior with lower band energy that could respond to visible light and exhibit better disinfection activity. The “f” and “d” transitions of the lanthanide in doped sample caused new electronic behavior of trapping/detrapping effect together with bandgap narrowing. The amount of malondialdehyde, protein, DNA and RNA released on destruction of E. coli was observed to be 0.915 × 10?3 μg mL?1, 859.912 μg mL?1, 20.173 μg mL?1 and 1146.073 μg mL?1, respectively. The above analytical methods along with standard plate count method substantiated the enhanced disinfection efficiency of the doped sample in sunlight.  相似文献   

7.
The aim of this paper was to demonstrate a fluorescence measurement method for rapid detection of two bacterial count by using water-soluble quantum dots (QDs) as a fluorescence marker, and spectrofluorometer acted as detection apparatus, while Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were as detection target bacteria. Highly luminescent water-soluble CdSe QDs were first prepared by using thioglycolic acid (TGA) as a ligand, and were then covalently coupled with target bacteria. The bacterial cell images were obtained using fluorescence microscopy. Our results showed that CdSe QDs prepared in water phase were highly luminescent, stable, and successfully conjugated with E. coli and S. aureus. The fluorescence method could detect 102-107 CFU/mL total count of E. coli and S. aureus in 1-2 h and the low detection limit is 102 CFU/mL. A linear relationship of the fluorescence peak intensity and log total count of E. coli and S. aureus have been established using the equation Y = 118.68X − 141.75 (r = 0.9907).  相似文献   

8.
We report a microfluidic paper based analytical device implementing ion concentration polarization (ICP) for rapid pre-concentration of Escherichia coli in water. The fabricated device consists of a paper channel with a Nafion® membrane and in-built micro wire electrodes to supply electric voltage to induce the ICP effect. E. coli cells were stained with SYTO 9 and fluorescence was used as a sensing method. The device achieved high concentration factor up to 2 × 105 within minutes. The effect of total ion concentration, on ICP and fluorescence intensity was studied. The reported device and method are suitable and effective for detection of E. coli during ballast water quality monitoring, coastal water quality monitoring where high salinity water is present.  相似文献   

9.
An electrochemical biosensor was developed for the determination of Escherichia coli (E. coli) in water. For this purpose, silver‐gold core‐shell (Ag@Au) bioconjugates and anti‐E. coli modified PS‐microwells were designed in a sandwich‐type format in order to obtain higher sensitivity and selectivity. Ag@Au bimetallic nanoparticles were synthesized by co‐reduction method. The core‐shell formation was analyzed by using UV‐Vis spectroscopy and transmission electron microscopy. Biotin labeled anti‐E. coli antibodies were coupled with Ag@Au nanoparticles to form bioconjugates. The electrochemical immunosensor was prepared by immobilizing anti‐E. coli on polystyrene (PS)‐microwells via chemical bonding. These modified microwells were identified with X‐ray photoelectron spectroscopy and surface enhanced Raman spectroscopy. E. coli was sandwiched between Ag@Au bioconjugates and anti‐E. coli on PS‐microwells at different concentrations. The relationship between the E. coli concentration and stripping current of gold ions (Au3+) were investigated by square wave anodic stripping voltammetry at pencil graphite electrode. The proposed method can provide some advantages such as lower detection limit and shorter detection time. The electrochemical response for the immunosensor was linear with the concentration of the E. coli in the range of 101 and 105 cfu/mL with a limit of detection 3 cfu/mL. The procedure maintains good sensitivity and repeatability and also offers utility in the fields of environmental monitoring and clinical diagnosis.  相似文献   

10.
A tyrosinase (Tyr) biosensor was fabricated by immobilizing Tyr on the surface of multiwalled carbon nanotubes (MWNTs)‐chitosan (Chit) composite modified glassy carbon electrode (GCE). The MWNTs‐Chit composite film provided a biocompatible platform for the Tyr to retain the bioactivity and the MWNTs possessed excellent inherent conductivity to enhance the electron transfer rate. The Tyr/MWNTs‐Chit/GCE biosensor showed high sensitivity (412 mA/M), broad linear response (1.0×10?8–2.8×10?5 M), low detection limit (5.0 nM) and good stability (remained 93% after 10 days) for determination of phenol. The biosensor was further applied to rapid detection of the coliforms, represented by Escherichia coli (E. coli) in this work. The current responses were proportional to the quantity of coliforms in the range of 104–106 cfu/mL. After 5.0 h of incubation, E. coli could be detected as low as 10 cfu/mL.  相似文献   

11.
《Analytical letters》2012,45(9):2155-2166
Abstract

A piezoelectric crystal biosensor system was applied to the detection of Escherichia coli. the system consists of an oscillator, a frequency counter, a flow cell and a modified piezoelectric crystal. Anti-E. coli antibody is immobilized on the surface of the crystal. It is used as an E. coli detection by measuring its resonant frequency shift due to a mass change caused by specific binding of the micro organisms to the surface. the frequency shift correlates with an E. coli concentration in the range of 106?108 cells·cm?3. the resonant frequency shift is increased by further treatment to bind micro-particles modified with anti-E. coli antibody. This method allows us to improve the determination limit to 105 cells · cm?3.  相似文献   

12.
Detecting and enumerating fecal coliforms, especially Escherichia coli, as indicators of fecal contamination, are essential for the quality control of supplied and recreational waters. We have developed a sensitive, inexpensive, and small-volume amperometric detection method for E. coli -galactosidase by bead-based immunoassay. The technique uses biotin-labeled capture antibodies (Ab) immobilized on paramagnetic microbeads that have been functionalized with streptavidin (bead–Ab). The bead–Ab conjugate captures E. coli from solution. The captured E. coli is incubated in Luria Bertani (LB) broth medium with the added inducer isopropyl -D-thiogalactopyranoside (IPTG). The induced -galactosidase converts p-aminophenyl -D-galactopyranoside (PAPG) into p-aminophenol (PAP), which is measured by amperometry using a gold rotating disc electrode. A good linear correlation (R2=0.989) was obtained between log cfu mL–1 E. coli and the time necessary to product a specific concentration of PAP. Amperometric detection enabled determination of 2×106 cfu mL–1 E. coli within a 30 min incubation period, and the total analysis time was less than 1 h. It was also possible to determine as few as 20 cfu mL–1 E. coli under optimized conditions within 6–7 h. This process may be easily adapted as an automated portable bioanalytical device for the rapid detection of live E. coli.  相似文献   

13.
We report a new approach for immunoassays based on magnetite nanoparticles for Escherichia coli (E. coli) detection using conductometric measurements. Biotinylated antibodies, anti-E. coli, were immobilized on streptavidin modified magnetite nanoparticles by biotin–streptavidin interaction. A layer of functionalized nanoparticles were directly immobilized on the conductometric electrode using glutaraldehyde cross-linking.The specific test with E. coli cells and the non specific test using Staphylococcus epidermidis (S. epidermidis) were investigated by conductometric measurements. Results show a good response as a function of antigen additions. The detection of 1 CFU/ml of E. coli induces a conductivity variation of 35 μS. The negative test shows good selectivity using the conductometric immunosensor. Conductometric measurements allow to detect 500 CFU/l.  相似文献   

14.
Yuxiao Cheng 《Talanta》2009,77(4):1332-95
A rapid, specific and sensitive method for assay of Escherichia coli (E. coli) using biofunctional magnetic nanoparticles (BMNPs) in combination with adenosine triphosphate (ATP) bioluminescence was proposed. The BMNPs were fabricated by immobilizing a specific anti-E. coli antibody on the surface of amine-functionalized magnetic nanoparticles (about 20 nm in diameter), and then was applied to capture the target bacteria E. coli from samples. The BMNPs exhibited high capture efficiency to E. coli. Transmission electron microscope (TEM) images showed that the BMNPs were bound to the surface of entire E. coli cells. The target bacteria became magnetic so that could be isolated easily from the sample solution by employing an external magnetic field. The concentration of E. coli captured by the BMNPs was then detected by an ATP bioluminescence method. The optimization of ATP measurement was carried out to improve the detection sensitivity. The proposed method was applied to detect the E. coli inoculated into pasteurized milk with low detection limit (20 cfu/mL) and short detection time (about 1 h).  相似文献   

15.
The detection and removal of bacteria, such as E. coli in aqueous environments by using safe and readily available means is of high importance. Here we report on the synthesis of nanodiamonds (ND) covalently modified with specific carbohydrates (glyco–ND) for the precipitation of type 1 fimbriated uropathogenic E. coli in solution by mechanically stable agglutination. The surface of the diamond nanoparticles was modified by using a Diels–Alder reaction followed by the covalent grafting of the respective glycosides. The resulting glyco–ND samples are fully dispersible in aqueous media and show a surface loading of typically 0.1 mmol g?1. To probe the adhesive properties of various ND samples we have developed a new sandwich assay employing layers of two bacterial strains in an array format. Agglutination experiments in solution were used to distinguish unspecific interactions of glyco–ND with bacteria from specific ones. Two types of precipitates in solution were observed and characterized in detail by light and electron microscopy. Only by specific interactions mechanically stable agglutinates were formed. Bacteria could be removed from water by filtration of these stable agglutinates through 10 μm pore‐size filters and the ND conjugate could eventually be recovered by addition of the appropriate carbohydrate. The application of glycosylated ND allows versatile and facile detection of bacteria and their efficient removal by using an environmentally and biomedically benign material.  相似文献   

16.
A rapid binding test has been developed for the detection of bacteria using polymer-modified magnetic nanoparticles. Polydopamine (PDA) can effectively act as a sorbent even in water solution, and a PDA coating on magnetic nanoparticles (MNPs) was therefore prepared to bind Escherichia coli (E. coli). Albeit non-selective, PDA-modified magnetic nanoparticles (MNPs@PDA) show nearly 100% efficiency in binding E. coli. If E. coli, grown in tryptic soy broth medium, is analyzed by capillary electrophoresis (CE) using phosphate buffer as the background electrolyte, two peaks are found, while a single peak is found with carbonate buffer containing 0.05% of poly(ethylene glycol). Self-polymerization of dopamine on E. coli at pH 9.5 is also feasible. The detection of E. coli is demonstrated by adding quantum dots (QDs) to form a QDs-PDA-E. coli aggregate for better CE analysis.
Figure
Development of Polymer-Modified Magnetic Nanoparticles and Quantum Dots for Escherichia coli Binding Test  相似文献   

17.
Zinc oxide@carbon quantum dots (ZnO@CQDs) nanocomposite was prepared via a facile hydrothermal method. Characterization of the obtained samples was carried out by Scanning electron microscopy-EDX(SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Photoluminescence (PL), and Fourier transformed infrared spectroscopy (FT-IR). These results revealed that we have prepared ZnO@CQDs nanocomposite successfully. Our study revealed that the antibacterial efficiency (against S.aureus and E.coli) under visible light irradiation of as prepared ZnO@CQDs nanocomposite was higher than pure ZnO nanoparticles. The ZnO@CQDs nanocomposite showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria with a minimal inhibitory concentration (6–8 mg/mL) against to E.coli and S.aureus. We also tested the light response of ZnO@CQDs under UV–vis light, by calculating its band gap data, after decorated with CQDs, the band gap of the pure ZnO can significantly decreased from 2.57 eV to 2.50 eV. The ZnO decorated by CQDs can both enhance the light absorption and suppress photogenerated electron–hole's recombination which results in the enhancement of antibacterial properties.  相似文献   

18.
The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5–8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe–mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe–mineral interaction energy (Hamaker constants and acid–base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 × 109 cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite–quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.  相似文献   

19.
The detection and identification of dilute bacterial samples by surface-enhanced Raman spectroscopy has been explored by mixing aqueous suspensions of bacteria with a suspension of nanocolloidal silver particles. An estimate of the detection limit of E. coli was obtained by varying the concentration of bacteria. By correcting the Raman spectra for the broad librational OH band of water, reproducible spectra were obtained for E. coli concentrations as low as approximately 103 cfu/mL. To aid in the assignment of Raman bands, spectra for E. coli in D2O are also reported. Figure Light scattering apparatus used to detect bacteria  相似文献   

20.
Abstract— The relevance of photoproducts produced by 254 nm irradiation to human skin cancer is first critically evaluated. Experiments identifying the mutagenic photoproducts at 254 nm are then described. Mutations are primarily due to the(6–4) photoproduct and the cyclobutane pyrimidine dimer, both in E. coli and in human cells. The(6–4) photoproduct may be more important in E. coli and the cyclobutane dimer more important in mammalian cells. In human cells, mutations occur at the C of a TC, CT, or CC cyclobutane dimer, but not at TT cyclobutane dimers, and also appear to occur, less frequently, at the C of TC and CC(6–4) photoproducts. The local structure of DNA is more important in determining the frequency of mutation at a site than is the photoproduct frequency at that site. The effect of DNA structure appears to be due to site-specific lethality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号