首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The simultaneous determination of Zn and Cu by anodic stripping voltammetry (ASV) is prone to errors due to the formation of Cu‐Zn intermetallic compounds. The main aim of this work was to study the possibility of simultaneous determination of Zn and Cu, together with Hg and Pb, using a mercury‐free solid gold microwire electrode. The multi‐element detection was carried out by differential pulse anodic stripping voltammetry (DPASV), in a chloride medium (0.5 M NaCl) under moderate acid conditions (HCl 1.0 mM) in the presence of oxygen, where the gold microwire electrode was used as stationary or vibrating working electrode during the deposition step. Under these conditions, no formation of Cu‐Zn intermetallic compounds were found for concentrations usually determined in surface waters. In addition, quantification of Zn and Cu, together with Hg and Pb, can be performed in a wide range of concentrations (about two orders of magnitude) using the same sample, in a very short period of time. The detection limits for Cu, Hg, Pb and Zn, using a vibrating electrode and 30 s of deposition time, were 0.2 µg L?1 for Hg, 0.3 µg L?1 for Pb and 0.4 µg L?1 for Zn and Cu, respectively. The proposed DPASV methods were successfully applied to the determination of Cu, Hg, Pb, and Zn in a certified reference fresh water, river, tap and coastal sea waters. These results proved the applicability and versatility of the proposed methods for the analysis of different water matrices and showed that a gold microwire electrode is a suitable choice to determine simultaneously Zn and Cu.  相似文献   

2.
Surface exchange reactions and diffusion of oxygen in ceramic composites consisting of a dilute and random distribution of inclusions in a polycrystalline matrix (host phase) are modeled phenomenologically by employing the finite element method. The microstructure of the mixed conducting composite is described by means of a square grain model, including grain boundaries of the matrix and interphase boundaries between the inclusions and grains of the host phase. An instantaneous change of the oxygen partial pressure in the surrounding atmosphere may give rise to an oxygen exchange process, i.e., oxidation or reduction of the ceramic composite. Relaxation curves for the total amount of exchanged oxygen are calculated, emphasizing the role played by fast diffusion along the interfaces. The relaxation curves are interpreted in terms of effective medium diffusion, introducing appropriate equations for the effective diffusion coefficient and the effective surface exchange coefficient. When extremely fast diffusion along the grain and interphase boundaries is assumed, the re-equilibration process shows two different time constants. Analytical approximations for the relaxation process and relations for the separate relaxation times are provided for this limiting case as well as for blocking interphase boundaries. Furthermore, conductivity relaxation curves are calculated by coupling diffusion and dc conduction. In the case of effective medium diffusion, the conductivity relaxation curves do not deviate from those for the total amount of exchanged oxygen. On the contrary, the conductivity relaxation curves differ remarkably from the time dependence of the total amount of exchanged oxygen, when the different phases of the composite re-equilibrate with separate time constants.  相似文献   

3.
In this work, a simple, rapid, reliable and low cost method for simultaneous electrochemical determination of As, Cu, Hg and Pb ions, on a vibrating gold microwire electrode combined with stripping voltammetry, is described for the first time.The multi-element detection was performed in the presence of oxygen by differential pulse anodic stripping voltammetry (DPASV) in HCl 0.1 M with NaCl 0.5 M. This media was found optimum in terms of peak resolution, peak shape and sensitivities, and has a composition similar to seawater to which the method could potentially be applied. The gold microwire electrode presented well defined, undistorted, sharp and reproducible peaks for trace concentrations of Cu, Hg and Pb and As presented a reproducible peak with a small shoulder. Using a gold vibrating microwire electrode of 25 μm diameter and 30 s deposition time, the detection limits of As, Cu, Hg and Pb were 0.07, 0.4, 0.07 and 0.2 μg L−1, respectively. Possible effects of Al, Cd, Cr, Fe, Mn, Ni, Sb and Zn were investigated but did not cause any significant interferences.Finally, the method was applied for the simultaneous determination of these four metals in unpolluted river water samples and the results were validated by Atomic Absorption Spectroscopy with Electrothermal Atomization (AAS-EA) or by Inductively Coupled Plasma Mass Spectrometry (ICP-MS).  相似文献   

4.
Monte Carlo and molecular dynamics simulations were performed to investigate the effect on the solubility, diffusion, and permeability of water and oxygen when adding graphene or single‐walled carbon nanotubes (SWCNTs) to polyethylene (PE). When compared with pure PE, addition of graphene lowered the solubility of water, whereas at lower temperatures, the oxygen solubility increased because of the oxygen–graphene interaction. Addition of SWCNTs lowered the solubility of both water and oxygen when compared with pure PE. A detailed analysis showed that an ordered structure of PE is induced near the additive surface, which leads to a decrease in the diffusion coefficient of both penetrants in this region. The addition of graphene does not change the permeation coefficient of oxygen (in the direction parallel to the filler) and, in fact, may even increase this coefficient when compared with pure PE. In contrast, the water permeability is decreased when graphene is added to PE. The addition of SWCNTs decreases the permeability of both penetrants. Graphene can consequently be added to selectively increase the solubility and permeation of oxygen over water, at least at lower temperatures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 589–602  相似文献   

5.
Carbon quantum dot (CQD) nanoparticles are synthesized by one‐step electrochemical method, cyclic voltammetry (CV), at different potentials using graphite rods and NaOH/EtOH as electrolyte. The electro‐chemically manufactured CQD is characterized by Transmission electron microscopy, Ultra violet absorption, X‐ray diffraction and Fourier transform infrared spectrometry. The morphology and microstructure methods confirm the formation of high quality CQD. Finally, we design a new gas diffusion electrode (GDE) based on CQD pasted on carbon paper for the oxygen reduction reaction at cathode side as methanol tolerance in direct methanol fuel cell and compared it with standard Pt‐C catalysts using cyclic voltammetry and linear sweep voltammetry. The ORR results in presence of methanol indicate that the GDE prepared from CQD exhibits methanol tolerance compared to the GDE prepared from Pt/C (Electrochem).  相似文献   

6.
In this study, a carbon paste electrode modified with (E)‐2‐((2‐chlorophenylimino)methyl)benzene‐1,4‐diol (CD) and titanium dioxide nanoparticles (TiO2) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of isoproterenol (IP) in the presence of acetaminophen (AC) and folic acid (FA). Initially, cyclic voltammetry (CV) was used to investigate the redox properties of this modified electrode at various scan rates. In the following, the mediated oxidation of IP at the modified electrode was described. The results showed an efficient catalytic activity of the electrode for the electrooxidation of IP, which leads to a reduction in its overpotential by more than 235 mV. The value of the electron transfer coefficient (α), catalytic rate constant (kh) and diffusion coefficient (D) were calculated for IP, using electrochemical approaches. Based on differential pulse voltammetry (DPV), the oxidation of IP exhibited a dynamic range between 0.5 and 1000 µM and a detection limit (3σ) of 0.47 µM. DPV was used for simultaneous determination of IP, AC and FA at the modified electrode. Finally, this method was used for the determination of IP in real samples, using standard addition method.  相似文献   

7.
Abstract  Surface exchange reactions and chemical diffusion in composites, consisting of a dilute distribution of inclusions in a matrix, and polycrystalline materials have been modelled by application of both a square grain and a spherical grain model. The diffusion equations have been solved numerically by employing a finite element approach in the case of the square grain model and the Laplace transform method involving numerical Laplace inversion with respect to the spherical grain model. The boundary conditions refer to oxygen exchange reactions between a gas phase and a mixed ionically–electronically conducting ceramic sample within the linear response regime, i.e. small variations of the oxygen partial pressure. Diffusion profiles as well as the time dependence of the total amount of exchanged oxygen (relaxation curves) have been calculated. A necessary requirement for effective medium diffusion is proposed, and appropriate relations for the effective chemical surface exchange coefficient and the effective chemical diffusion coefficient are derived. On the contrary, when the time constant for diffusion from the matrix into the inclusions of a composite exceeds considerably the relaxation time for effective medium diffusion, relaxation curves with two separate time constants are observed. Analogously, in the case of polycrystalline materials the overall transport process is determined by slow (rate-limiting) bulk diffusion from the grain boundaries into the grains. Adequate formulae for the relaxation times are given based on analytical approximations of the solution functions to the diffusion equations. In addition, the spherical grain model is applied to interpret the re-oxidation kinetics of the positive temperature coefficient of resistivity (PTC) ceramics based on conductivity relaxation experiments. Graphical abstract     相似文献   

8.
曾涵  赵淑贤  龚兰新  粟智 《应用化学》2013,30(4):436-443
采用循环伏安法将聚苯并咪唑和漆酶的复合物共沉积在玻碳电极表面。 制备的漆酶基电极在O2气饱和的磷酸盐缓冲液中可以观察到明显的催化还原电流,实现了无媒介体的酶-电极间直接电子迁移,电极静止时氧还原起始电位为645 mV,近于漆酶活性位T1的式电位580 mV,而极限扩散催化电流密度可达318.5×10-6 A/cm2。 但由于O2气在致密的固酶导电聚合物修饰层中扩散不够快(扩散系数只有在溶液中的1.25%),导致电极以较高速度旋转时极限扩散催化电流密度仅仅增加到1×10-3 A/cm2。 根据静态时极限催化电流密度求算得到的固定漆酶催化氧还原平均转化率为21.7/s。 这种漆酶基电极具有良好的重现性和长期使用性(储存10 d后催化活力仍然保持了初始值的80%以上),在人体生理温度和弱酸性条件下具有最佳催化活力。 这种漆酶基电极作为氧传感器具有良好的传感性能:检测限低(0.5 μmol/L),灵敏度高(71.1 μA·L/mmol),且对O2具有良好的亲和力(KM=89.9 μmol/L)。  相似文献   

9.
A rapid method for sensitive voltammetric determination of dinotefuran residue was reported. The proposed method was based on the electrocatalytic reduction of dinotefuran on β‐cyclodextrin‐graphene composite modified glassy carbon electrode (β‐CD‐rGO/GCE), giving rise to a higher reduction signal to dinotefuran relative to the bare (GCE) and graphene modified electrode (rGO/GCE). Moreover, a further signal enhancement was observed when the modified electrode incubated in solution at low temperature (0 °C) for a short time. The reduction mechanism and binding affinity were also discussed. The external standard calibration curve was obtained from linear sweep voltammetry in the range of 0.5 to 16.0 μM with a detection limit of 0.10 μM. In addition to optimization of pretreatment, this electrochemical method has been applied to the dinotefuran residue determination in millet samples with the detection limit of 0.01 mg kg?1 and compared with an high performance liquid chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate and rapid under the used conditions.  相似文献   

10.
An organic‐inorganic composite electrode was prepared by the sol‐gel method. For this purpose the carbon composite electrode (CCE) was modified with copper hexacyanoferrate (CuHCF). The CuHCF‐CCE was prepared by two methods. In one method CCE was prepared in one step and in another method the electrode was prepared in a two‐step process. The electrochemical behavior of the CuHCF modified electrode was studied by cyclic voltammetry; the modified electrode shows a pair of peaks with a surface‐confined characteristic in a 0.1 M phosphate buffer (pH 7) with K+ cation, as a supporting electrolyte. The CuHCF‐CCE showed electrocatalytic activity toward oxidation of Dopamine (DA). The kinetics of the catalytic reaction was investigated by using chronoamperometry. The average value of the rate constant for catalytic reaction and the diffusion coefficient were calculated. At a 0.85 V potential under hydrodynamic conditions (stirred solution), the oxidation current is proportional to the dopamine concentration, and the calibration plot was linear over the concentration range of 5‐85 μM.  相似文献   

11.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

12.
A knowledge of the solubility of oxygen in glucose-containing solutions is essential for the determination of the kinetics of the glucose oxidase-catalysed glucose oxidation. The enzyme glucose oxidase was used in a new glucose sensor. Combination of data for the dynamic viscosity and density from the literature and data from measurements with a rotating disc electrode (RDE) for hydrogen peroxide and hydroquinone showed that the factor ηD (η = dynamic viscosity; D = diffusion coefficient) remains constant in solutions with a glucose concentration ranging from 0 to 1 M. Assuming that this is also valid for oxygen, the diffusion coefficient of oxygen in glucose solutions was calculated and the solubility of oxygen was determined with RDE measurements. At both 25 and 37°C the relationship between the solubility of oxygen and the glucose concentration is a second-degree polynomial.  相似文献   

13.
Simultaneous anodic stripping voltammetric determination of Pb and Cd is restricted on gold electrodes as a result of the overlapping of these two peaks. This work describes the quantitative determination of a binary mixture system of Pb and Cd, at low concentration levels (up to 15.0 and 10.0 µg L?1 for Pb and Cd, respectively) by differential pulse anodic stripping voltammetry (DPASV; deposition time of 30 s), using a green electrode (vibrating gold microwire electrode) without purging in a chloride medium (0.5 M NaCl) under moderate acidic conditions (HCl 1.0 mM), assisted by chemometric tools. The application of multivariate curve resolution alternating least squares (MCR‐ALS) for the resolution and quantification of both metals is shown. The optimized MCR‐ALS models showed good prediction ability with concentration prediction errors of 12.4 and 11.4 % for Pb and Cd, respectively. The quantitative results obtained by MCR‐ALS were compared to those obtained with partial least squares (PLS) and classical least squares (CLS) regression methods. For both metals, PLS and MCR‐ALS results are comparable and superior to CLS. For Cd, as a result of the peak shift problem, the application of CLS was unsuitable. MCR‐ALS provides additional advantage compared to PLS since it estimates the pure response of the analytes signal. Finally, the built up multivariate calibration models, based either in MCR‐ALS or PLS regression, allowed to quantify concentrations of Pb and Cd in surface river water samples, with satisfactory results.  相似文献   

14.
A common method for the application of distance constraints in molecular simulations employing Cartesian coordinates is the SHAKE procedure for determining the Lagrange multipliers regarding the constraints. This method relies on the linearization and decoupling of the equations governing the atomic coordinate resetting corresponding to each constraint in a molecule, and is thus iterative. In the present study, we consider an alternative method, M‐SHAKE, which solves the coupled equations simultaneously by matrix inversion. The performances of the two methods are compared in simulations of the pure solvents water, dimethyl sulfoxide, and chloroform. It is concluded that M‐SHAKE is significantly faster than SHAKE when either (1) the molecules contain few distance constraints (solvent), or (2) when a high level of accuracy is required in the application of the constraints. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 501–508, 2001  相似文献   

15.
The molecular interactions of pyrazine (PZ) with n-propanol, chloroform, and tetrahydrofuran (THF) have been investigated by employing ultraviolet spectroscopy and quantum chemical calculation methods. A new quantity, excess absorption coefficient, was introduced to represent the strength of the interaction. It was found that the interaction decreased in the order: PZ-propanol>PZ-chloroform>PZ-THF. The Benesi-Hildebrand method indicated that the interaction stoichiometries of the PZ-chloroform and PZ-THF systems were both 1:1 and the equilibrium constants were determined to be 2.07 and 0.64M(-1), respectively. Using a nonlinear fitting method, we demonstrated that the PZ-propanol was a two-step 1:2 interaction pair and the equilibrium constants were determined to be 8.8 and 0.19M(-1). Quantum chemical calculations showed the existence of hydrogen-bonding interactions in all the three system: normal Ncdots, three dots, centeredH-O hydrogen bond in the PZ-propanol system, unconventional Ncdots, three dots, centeredH-C hydrogen bond in the PZ-chloroform, and weak N-C-Hcdots, three dots, centeredO hydrogen bond in the PZ-THF system. Methodologically, we pointed out that special care must be taken when the Benesi-Hildebrand method is used to evaluate 1:2 interactions.  相似文献   

16.
《Analytical letters》2012,45(1):56-65
Abstract

The electrochemical methods, sampled direct current, and differential pulse polarography, were developed successfully and applied to the routine determination of Entacapone in pharmaceutical formulation. Both methods gave rise to three reduction waves or peaks respectively. The irreversibility and the diffusion‐controlled of the first reduction were confirmed by cyclic voltammetry. The limiting currents are directly proportional to the concentration of entacapone with a correlation coefficient of 0.99. The within‐day coefficients of variation and the day‐to‐day coefficient of variation were less than 3.5% for entacapone and Comtan®. The percentage recovery for entacapone in tablets is satisfactory for both methods. The method is simple without any pretreatment.  相似文献   

17.
Electroreduction of oxygen in alkaline solution on glassy carbon (GC) electrodes modified with different carbon nanomaterials has been studied. Electrochemical experiments were carried out in 0.1 M KOH employing the rotating disk electrode and rotating ring-disk electrode methods. The GC disk electrodes were modified with carbon nanomaterials using polytetrafluoroethylene as a binder. Four different carbon nanomaterials were used: multiwalled carbon nanotubes, carbon black powder, and two carbide-derived carbons (CDC). For the first time, the electrocatalytic behavior of CDC materials toward oxygen reduction is explored. Electrochemical characterization of the materials showed that all the carbon nanomaterial-modified GC electrodes are highly active for the reduction of oxygen in alkaline solutions.  相似文献   

18.
The complexes of cyclohexylacetic acid and cholic acid with beta-cyclodextrin were studied by NMR diffusion coefficient measurements. The diffusion coefficient of the 1:1 cyclohexylacetic acid/beta-cyclodextrin complex, K(a) = 1800 +/- 100 M(-1), is slightly slower (3.23 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin (3.29 +/- 0.07 x 10(-6) cm(2) s(-1)). The diffusion coefficient of the 1:1 cholic acid/beta-cyclodextrin complex, K(a) = 5900 +/- 800 M(-1), is significantly slower (2.93 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin. The results indicate that caution should be exercised when studying host-guest complexation by the so-called 'single point' technique. A novel data treatment is introduced which takes into account the diffusion behavior of all of the species when determining K(a). Experimentally determined diffusion coefficients of complexes are also a useful probe of the size of host-guest complexes.  相似文献   

19.
Electrochemically induced oxygen spillover and diffusion in the Pt(O(2))|YSZ system is investigated in a combined experimental and theoretical study. The spreading of spillover oxygen is imaged by photoelectron emission microscopy (PEEM) on dense and epitaxial Pt(111) thin film electrodes prepared by pulsed laser deposition (PLD). Two different models are used to obtain surface diffusion coefficients from the experimental data, (i) an analytical solution of Fick's 2nd law of diffusion, and (ii) a numerical reaction-diffusion model that includes recombinative desorption of O(2) into the gas phase. The resulting diffusion coefficient has an activation energy of 50 kJ mol(-1) and a preexponential factor of 0.129 cm(2) s(-1) with an estimated uncertainty of ±20% for the activation energy and ±50% for the absolute value. The Fickian model slightly overpredicts diffusion coefficients due to the neglect of oxygen desorption. Experimental and theoretical results and limitations are discussed and compared to previous work.  相似文献   

20.
In drug‐delivery systems, drug transport is a key step, but the interpretation of the transport mechanism is still controversial. Here, we investigated a promising hydrogel library loaded with the anticonvulsant drug ethosuximide (ESM). The self‐diffusion coefficient of ESM was measured using two methods: a direct and advanced measurement with a pulsed field gradient spin‐echo (PFGSE) method, using an NMR spectrometer equipped with high‐resolution magic angle spinning (HR‐MAS) probe, and an indirect one based on fitting in vitro drug‐delivery data. Starting from the experimental data a mathematical model without fitted parameters was developed and all the phenomena involved, that is, adsorption and diffusion, were considered. At low drug concentrations, adsorption prevails and consequently the diffusivity in the gels is lower than that in water. At high drug concentrations, where all adsorption sites are saturated, the diffusion in the gels is similar to that in a water solution. This study may pave the way for better device design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号