首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2006,18(9):911-917
Electrooxidation of methanol on glassy carbon (GC) electrode modified by optimum carbon supported Pt electrocatalyst (Pt‐C/GC) in acid media is investigated. The catalyst is prepared by ultrasonicating Pt/C powders in aqueous media. The activity of prepared Pt‐C/GC electrode is studied in potential range of 0–1000 mV (versus SCE) by cyclic voltammetry. The results showed that the Pt/C dispersed layer at the surface of glassy carbon electrode, behaves as an electrocatalyst for the oxidation of methanol in acid medium by optimum loading of Pt (0.2 mg cm?2). The electrochemical properties of prepared electrode are studied under various conditions. However the effect of various parameters in the catalytic enhancement of Pt/C, such as platinum loading, sulfuric acid concentration, different scan rates, different final potentials, and medium temperature are considered and examined.  相似文献   

2.
3.
《Electroanalysis》2006,18(12):1141-1151
This paper reports a study of the factors affecting the analytical performance of gold and glassy carbon electrodes modified with the tripeptide Gly‐Gly‐His for the detection of copper ions. Gly‐Gly‐His is attached to a glassy carbon (GC) surface modified with 4‐carboxyphenyl moieties or a gold surface modified with 3‐mercaptopropionic acid by the reaction of the N‐terminal amine group of the peptide with the carboxylic acid groups of the monolayer via carbodiimide activation. X‐ray photoelectron spectroscopy was used to characterize the steps in the biosensor fabrication. It was found that the analytical performance of a sensor prepared with Gly‐Gly‐His on a GC electrode was similar to that on a gold electrode under the same conditions. The performance was greatly enhanced at higher temperature, no added salt during copper accumulation and longer accumulation time within a pH range of 7–9. Interference studies and investigations of stability of the Gly‐Gly‐His sensor are reported. Analysis of natural water samples show that the sensors measure only copper ions that can complex at the sensor surface. Strongly complexed copper in natural water is not measured. Despite greater stability of diazonium salt derived monolayers on carbon surfaces compared with alkanethiols self‐assembled monolayers on gold, the stability of the sensors was essentially the same regardless of the modification procedure.  相似文献   

4.
The spillover phenomenon is observed on the platinum (Pt) disk electrode modified by multi-wall carbon nanotubes (MWNTs). The rate of the spillover of oxygen-containing species produced on Pt surface to and from MWNTs is fast. However for hydrogen-adatoms, the spillover is very weak. The selective spillover on the Pt/MWNTs electrode may provide a novel way to design catalysts.  相似文献   

5.
A novel ionic liquid, 1-(ferrocenyl butyl)-3-methylimidazolium tetrafluoroborate (Fc-IL), was synthesised. The nanocomposite of Fc-IL and multi-walled carbon nanotubes (MWCNTs) was constructed and used for surface modification of carbon-ceramic electrode. The modified electrode was applied to the determination of hydrazine. Operational parameters such as pH of the solution, ionic liquid volume and amount of carbon nanotubes, which affect the analytical performance of the modified electrode, were optimised. The linear range of the modified electrode toward hydrazine concentration was 0.96–106.10 μg L–1 with a detection limit of 0.64 μg L–1 (S/N = 3). The modified electrode displayed high repeatability, reproducibility, long-term life time and low response time (<3 s). The applicability of this method was further tested by analysing the hydrazine content in boiler-feed water samples containing different concentrations of hydrazine and the results were in good agreement with the spectrophotometry method.  相似文献   

6.
Pt电极上Sb,S吸附原子对正丁醇电催化氧化性能的影响   总被引:1,自引:0,他引:1  
运用电化学循环伏安和石英晶体微天平研究了0.1 mol/L H2SO4 溶液中正丁醇(1-BL)在Pt电极和以Sb,S吸附原子修饰的Pt(Pt/Sbad和Pt/Sad)电极上电催化氧化过程。从电极表面质量变化表明正丁醇的氧化与电极表面氧物种有着极其密切的关系。Pt电极表面Sb吸附原子能在较低的电位下吸附氧,可显著提高正丁醇电催化氧化活性。与Pt电极相比较,Sb吸附原子修饰的Pt电极使正丁醇氧化的峰电位负移了0.33 V,峰电流增大了近一倍。相反,Pt电极表面S吸附原子的氧化会消耗表面氧物种,抑制了正丁醇的电氧化。本文从表面质量变化提供了吸附原子电催化作用的新数据。  相似文献   

7.
Pt电极上吸附原子对仲丁醇电催化氧化性能的影响   总被引:1,自引:0,他引:1  
运用电化学循环伏安和石英晶体微天平研究了HClO4溶液中仲丁醇在Pt电极及以Sb和S吸附原子修饰的Pt(Pt/Sbad和Pt/Sad)电极上的电催化氧化过程 .从电极表面质量变化可以看出 ,仲丁醇的氧化与电极表面的氧物种有着极其密切的关系 .Pt电极表面Sb吸附原子可在较低的电位下吸附氧 ,明显提高仲丁醇的氧化活性 .与Pt电极相比 ,Sb吸附原子修饰的Pt电极使仲丁醇氧化的峰电位负移约 10 0mV .相反 ,Pt电极表面S吸附原子的氧化会消耗表面氧物种 ,抑制仲丁醇的氧化 .从电极表面质量变化提供了吸附原子电催化作用的数据  相似文献   

8.
《Electroanalysis》2017,29(3):898-906
Platinum nanoparticles (NPs) modified with undecafluorohexylamine (UFHA) and octylamine were synthesized as a novel model cathode catalyst for fuel cells. The modified Pt NPs were well characterized by FTIR, X‐ray photoelectron spectroscopy, thermogravimetric analysis, and transmission electron microscopy. These NPs supported on carbon black were applied as electrocatalysts for the oxygen reduction reaction. The UFHA‐modified Pt NP catalyst showed high electrocatalytic activity and durability compared to a commercial catalyst. Besides suppression of undesired oxide formation on the Pt surface, the affinity between the perfluorinated alkyl chains of UFHA and Nafion® improved the catalyst activity by creating a desirable proton conduction path. Additionally, UFHA modification improved durability by suppressing Pt dissolution and carbon corrosion because of restricted water accessibility. The β ‐oxide formation, which is responsible for Pt dissolution, was significantly attenuated by surface modification.  相似文献   

9.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

10.
<正>Mesoporous carbon(MC) with surface area of 380 m~2/g was prepared and employed as the carbon support of Pt catalyst for counter electrode of dye-sensitized solar cells.Pt/MC samples containing 1 wt%Pt were prepared by reducing chloroplatinic acid on MC using wet impregnation.It was found that Pt nanoparticles were uniform in size and highly dispersed on MC supports.The average size of Pt nanoparticles is about 3.4 nm.Pt/MC electrodes were fabricated by coating Pt/MC samples on fluorine-doped tin oxide glass.The overall conversion efficiency of dye-sensitized solar cells with Pt/MC counter electrode is 6.62%,which is higher than that of the cells with conventional Pt counter electrode in the same conditions.  相似文献   

11.
《中国化学会会志》2017,64(9):1058-1064
To reveal the nature of the interaction of the optical isomers of propranolol with the surface of carbon paste electrodes modified by uracil, we performed a combined computational and experimental study. Our study comprised the different modes of complexation between propranolol and uracil molecules covering the carbon paste electrode within two approaches: molecular dynamics simulation (MD ) and quantum mechanics (QM) modeling. A graphene layer was used as a model of the carbon paste electrode. The computations showed that uracil modification of the carbon paste electrode surface enhanced the selectivity toward the D‐isomer of propranolol as compared to the unmodified case. These theoretical results agree with our voltammetric measurements.  相似文献   

12.
《Analytical letters》2012,45(15):2482-2492
The objective of this work was the development of reliable methods to determine 2,4-dinitrotoluene, a precursor to explosives. A complex between Fe(II) ion and 2,4-dinitrotoluene was formed in solution and characterized by ultraviolet-visible absorption spectroscopy using Job’s plots and attenuated total reflection-Fourier transform infrared spectroscopy. Surface modification of glassy carbon electrodes were performed with iron nanoparticles via electrochemical reduction of iron(II). The modified electrode was employed for the determination of 2,4-dinitrotoluene. Scanning electron micrographs showed that the iron nanoparticles were incorporated on the surface of glassy carbon electrode. The electrochemical determination of 2,4-dinitrotoluene was performed by cyclic voltammetry using the modified electrode. The iron modified electrode produced larger reduction currents than the unmodified electrode for the same concentration of 2,4-dinitrotoluene. Concentrations of 2,4-dinitrotoluene as low as 10 parts per billion were determined using the modified electrode.  相似文献   

13.
A new modified carbon‐ceramic electrode was prepared by incorporating TiO2 nanoparticle into sol‐gel network by accompanying apple tissue. A mixture of fine graphite powder with 15 wt% of TiO2 nanoparticle was used for the preparation of the carbon matrix and finally modification with a known amount weighted of apple tissue. The apple tissue containing polyphenol oxidase enzyme acts as molecular recognition element. The electrocatalytic oxidation of dopamine was investigated on the surface of the nanobiocomposite modified carbon‐ceramic electrode using cyclic voltammetry, chronoamperometry and amperometry techniques. Effect of pH, scan rate, TiO2 percentage on the response of modified electrode was studied. The prepared modified electrode presented a linear range for dopamine from 5.0×10?6 to 1.2×10?3 M in buffered solutions with pH 7.4 by amperometry. The detection limit was 3.41×10?6 M dopamine. The response of the modified carbon‐ceramic electrode and unmodified carbon‐ceramic electrode was compared.  相似文献   

14.
通过电沉积的方式在多壁碳纳米管(MWCNTs)修饰玻碳电极表面上沉积铂(pt)纳米粒子,并运用循环伏安法(CV)、示差脉冲伏安法(DPV)探讨了芦丁在铂纳米/碳纳米管/玻碳电极上的电化学行为.实验结果表明,芦丁在该修饰电极上呈现一对良好氧化还原峰,其氧化峰电流与浓度在3.2×10(-8)~1.2×10(-5)mol/L...  相似文献   

15.
A new H2O2 enzymeless sensor has been fabricated by incorporation of thionin onto multiwall carbon nanotubes (MWCNTs) modified glassy carbon electrode. First 50 μL of acetone solution containing dispersed MWCNTs was pipetted onto the surface of GC electrode, then, after solvent evaporations, the MWCNTs modified GC electrode was immersed into an aqueous solution of thionin (electroless deposition) for a short period of time <5–50 s. The adsorbed thin film of thionin was found to facilitate the reduction of hydrogen peroxide in the absence of peroxidase enzyme. Also the modified electrode shows excellent catalytic activity for oxygen reduction at reduced overpotential. The rotating modified electrode shows excellent analytical performance for amperometric determination of hydrogen peroxide, at reduced overpotentials. Typical calibration at ?0.3 V vs. reference electrode, Ag/AgCl/3 M KCl, shows a detection limit of 0.38 μM, a sensitivity of 11.5 nA/μM and a liner range from 20 μM to 3.0 mM of hydrogen peroxide. The glucose biosensor was fabricated by covering a thin film of sol–gel composite containing glucose oxides on the surface of thionin/MWCNTs modified GC electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The detection limit, sensitivity and liner calibration rang were 1 μM, 18.3 μA/mM and 10 μM–6.0 mM, respectively. In addition biosensor can reach 90% of steady currents in about 3.0 s and interference effect of the electroactive existing species (ascorbic acid–uric acid and acetaminophen) is eliminated. The usefulness of biosensor for direct glucose quantification in human blood serum matrix is also discussed. This sensor can be used as an amperometric detector for monitoring oxidase based biosensors.  相似文献   

16.
Single-stranded deoxyribonucleic acid (ssDNA)-wrapped single-walled carbon nanotubes (SWNTs) were modified on the surface of glassy carbon electrode (GCE) by covalent modification technique. Field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectrum (XPS), electrochemical impedance spectroscopy (EIS), and cyclic voltammetric (CV) were used to characterize the properties of this modified electrode. The results showed that SWNTs-ssDNA composites were successfully immobilized onto the surface of GCE. Moreover, this modified electrode exhibited high stability, largely active areas, and efficiently electrocatalytic activities. It had been used for the analysis of various biomolecules, such as dopamine (DA), uric acid (UA), and ascorbic acid (AA), and the results were satisfactory.  相似文献   

17.
The aim of this work is to study four types of modification of a glassy carbon electrode by Fe(III)-tetrakis(p-tetraaminophenyl)porphyrin and determine the influence of the method of immobilization of the complex on glassy carbon in electrocatalytic properties for the sulfite and hydrogensulfite oxidation in ethanol–water. The first modification was deposition of a drop of solution containing the porphyrin on a glassy carbon electrode and evaporation of the solvent (dry-drop method). The second method was immersion of the electrode at 54°C in a solution of dimethylformamide containing the porphyrin for 2 h. The third method consisted of the same heating treatment but after formation of a chemical bond of 4-aminopyridine on the glassy carbon surface, which acts as an axial ligand for the first layer of porphyrin. The fourth method involves electropolymerization of the porphyrin on the electrode surface. Important differences in stability, the potential where the oxidation wave begins and selectivity of the electrode to sulfite or hydrogensulfite were observed. The behavior of the polymer-modified electrode is different in water compared to ethanol–water.  相似文献   

18.
砷钼杂多酸薄膜化学修饰电极研究   总被引:2,自引:0,他引:2  
杂多酸和杂多酸化学修饰电极的电化学研究及应用正在不断地深入发展,杂多酸化学修饰电极不仅可用于中心原子的定量分析,还以其优良的电催化性质,应用于液相色谱的电化学检测,因此日益受到重视,本文首次报道以玻碳为基体的砷钼杂多酸薄膜化学修饰电极(简称AsMo12电极)的制备及其电化学和电催化性质,AsMo12电极具有良好的稳定性和电化学活性,电极寿命长,可应用于砷(V)的伏安法测定和IO3-的电催化检测。  相似文献   

19.
《Electroanalysis》2017,29(6):1543-1553
A graphene‐functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4‐carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer‐modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4‐carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye‐labeled insulin (insulin‐FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin‐FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC‐labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene‐functionalized carbon fiber electrode demonstrated significant advantages in the signal‐stimulated insulin release comparing with the carbon fiber electrode without the graphene species.  相似文献   

20.
《Electroanalysis》2004,16(17):1444-1450
The multi‐walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc‐NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O2 reduction. The reduction peak potential of O2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co‐exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MWNTs/CoTMPyP)n prepared by layer‐by‐layer method were investigated, and the results showed that the peak current of O2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号