首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
ICP-MS (inductively coupled plasma mass spectrometry) is shown as a very sensitive method for quantitative determination of Th and U concentration and excretion analysis in urine without any sample pretreatment. The current standard method for incorporation monitoring applies alpha-spectrometry, a very tedious and time consuming technique. ICP-MS offers an attractive alternative for monitoring of thorium and uranium body burdens in occupationally exposed subjects and also larger groups of the general population. A limit of determination of 0.5 ng/L in aqueous solutions and 1 ng/L in urine samples for both elements was achieved, with a precision of about ± 10% in the concentration range of appr. 10 ng/L. Due to the lack of a suitable reference material, the accuracy of the method was tested by comparing some of the results with those obtained by -spectrometry, especially for U. There was a sufficient agreement on both results.  相似文献   

2.
核事故状态下的应急处理,要求对环境介质中的放射性核素进行快速分析。尿样中铀同位素测量作为内照射剂量评价的主要手段,其分析效率越高,则对核事故中涉铀人员的安全救治越及时、有效。而尿样中其它无机离子是铀含量的106倍,导致ICP-MS测量过程中尿盐堵塞进样毛细管。为降低样品的含盐量并获得较好的检测结果,本文对样品预处理过程进行优化。采用先加热氧化去除有机物,再进行1~10倍稀释后测试样品的铀同位素丰度及浓度。结果表明:将25 mL样品稀释至100 mL后效果最佳,分析方法不确定度为5.4 %,回收率95 %~105 %。  相似文献   

3.
Quantitative and isotopic measurement of actinide elements is required in many circumstances in the nuclear industry. For example, determination of very low levels of these alpha emitters in human urine samples is used to assess the internal committed dose for nuclear workers. Quantifying actinide isotopes in radioactive waste from nuclear processing and nuclear facility decommissioning provides important information for waste management. Accurate determination of the uranium isotopic ratios in reactor fuels provides fuel burnup information. Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of Th, U, and Pu in various samples including urine, nuclear waste, and nuclear fuel in our laboratory. In order to maximize the capability of the technique and ensure quality analyses, ICP-MS was used to analyze samples directly, or after pre-treatment to separate complicated matrices or to concentrate the analyte(s). High-efficiency sample introduction techniques were investigated. Spectral interferences to minor isotopes caused by peak tails and hydride ions of major actinide isotopes were studied in detail using solutions prepared with light and heavy waters. The quality of the isotopic ratio measurement was monitored using standard reference materials.  相似文献   

4.
A method based on flow injection extraction chromatography coupled to on-line ICP-MS (FI-EXC-ICPMS) has been developed and validated for simultaneous thorium and uranium determination in human body fluids. By using extraction chromatography, the limits of detection achieved for 232Th, 235U and 238U were 0.06 ng.l-1, 0.0014 ng.l-1 and 0.05 ng.l-1, respectively. The accuracy of the FI-EXC-ICPMS method was 102.4% and 101.5% with overall precision (RSDmax at 95% CI) of 5.3% and 4.9% for 232Th and 238U, respectively. The 235U/238U atom ratio is measured with 1.8% precision. The technique was employed for simultaneous thorium and uranium analyses in human urine and blood samples after microwave digestion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Zircon is an accessory mineral, which occurs at low concentrations in a wide variety of rocks and is a host for hafnium, rare-earth elements (REE) and radio active elements like uranium and thorium. The presence of uranium in zircon has led to its increased use in the age determination of rocks. Zirconium is also considered as a strategic, hi-tech element because of its various applications, especially in the manufacturing, nuclear and aerospace industries. Analysis of zircon constitutes one of the tough tasks in analytical chemistry as it is a highly resistant mineral and it is extremely difficult to achieve its complete decomposition. In the present work, inductively coupled plasma mass spectrometry has been applied to the determination of hafnium, REE, uranium and thorium in zircon samples using two different sample dissolution procedures, one employing sodium peroxide fusion and another using a fusion mixture of KHF2 and NaF in 3:1 ratio. Some selected zircon samples originating from different places on the eastern coast of India have been analysed by both the methods and values obtained by both methods were found to be in good agreement with each other. Though a number of international zircon reference materials are available, certified or even proposed values are available only for a very few elements in them. Two zircon reference materials have also been analysed by both methods and usable values have been proposed in this paper. The values obtained by both methods were found to compare well with each other and as well with those reported in literature. The % RSD for all the estimated elements varied from 1.0 to 12.0% at different concentration levels.  相似文献   

6.
Determination of uranium in tap water by ICP-MS   总被引:23,自引:0,他引:23  
A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.  相似文献   

7.
A routine procedure has been developed for the simultaneous determination of uranium and thorium in high concentration thorium ores. INAA is used to determine the uranium and thorium concentration. However, for very low concentrations of uranium a radiochemical procedure based on the use of NPy/benzene as an extractant has to be employed. The precision and accuracy of the method has been determined by analyzing IAEA and NBL standard thorium/uranium ores.  相似文献   

8.
A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP–mass spectrometry (SF-ICP–MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L–1, respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86–5.50 and 0.176–2.35 ng L–1, respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82–1.04% (RSD) was obtained for 235U/238U at low ng L–1 levels, using the FI transient signal approach.  相似文献   

9.
The electronic properties of the metal atoms encaged in a fullerence cage were investigated using synchrotron X-ray photoelectron spectroscopy. Systematic variations in photoemission of valence band of Gd@C82, Gd@C82(OH)12, and Gd@C82(OH)22 were observed in Gd 5p levels. The results suggest that the electronic properties of the inner metal atom can be efficiently modulated by surface chemistry of the fullerene cage.  相似文献   

10.
Summary Thorium in uranium is determined directly at trace levels by an XRF method. Uranium oxide samples are put in the form of double layer pellets and analysed by using Philips PW-1220 X-ray spectrometer. The typical value of the precision of the method at 200 ppm level is ±10% and estimation range is 50–1000 ppm of thorium in uranium.
Direkte Bestimmung von Thorium in Uranoxid durch Röntgenfluorescenz-Spektrometrie
Zusammenfassung Mit Hilfe der beschriebenen Methode kann Th in Spurenkonzentrationen direkt bestimmt werden. Die Uranoxidproben werden als Doppelschicht-Tabletten eingesetzt und mit Hilfe eines Philips PW-1220 Röntgenspektrometers analysiert. Die Genauigkeit im Bereich von 200 ppm beträgt ±10%. Der Anwendungsbereich liegt bei 50–1000 ppm.
  相似文献   

11.
A neutron activation method is described for the determination of thorium and uranium in rocks at the microgram and submicrogram levels. Radiochemical separations are carried out using the alpha-active nuclides protactinium-231 and neptunium-237 as tracers. The method is applied to the Standard granite XXX and the standard diabase XXX.  相似文献   

12.
Shallow land burial is routinely used for the disposal of low-level radioactive waste. Natural processes causing leaching of radionuclides can lead to contamination of surrounding ground water and soil by the radionuclides. The comparative leachability of radionuclides U(nat), 226Ra, 228Ra and Th(nat) from the soil of a radioactive waste disposal site, by ground water was evaluated. The probability of leaching was obtained in the following order Ra (≈77%) > U (≈40%) > Th (≈20%). Observed ratios (OR) were calculated to correlate leachability of radionuclides to that of major cations Ca2+ and Mg2+. The leaching of the radionuclides was seen to be dependent on Ca2+ and SO42− leached from the soil. This study provides sitespecific leachability of radionuclides, that can be used as indicator of the tendency for migration or retention in soil. It can play an important role during an unforeseen accident like breach of containment at the waste disposal site leading to contamination of soil and ground water and causing hazard to public via drinking water route.  相似文献   

13.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

14.
A method for the sequential determination of thorium and uranium has been developed. In the sample solution containing thorium and uranium, thorium is first determined by complexometric titration with ethylenediaminetetraacetic acid (EDTA) and then in the same solution uranium is determined by redox titration employing potentiometry. As EDTA interferes in uranium determination giving positive bias, it is destroyed by fuming with HClO4 prior to the determination of uranium. A precision and accuracy of better than ±0.15% is obtained for thorium at 10mg level and uranium ranging from 5 mg to 20 mg in the aliquot.  相似文献   

15.
A simple method for the determination of uranium and thorium by delayed neutron counting is described. One portion of the sample is irradiated in a reactor and the delayed neutrons are counted. Another portion of the sample is mixed with B4 C powder absorbing the thermal neutrons, and irradiated in the same position. From those data, both uranium and thorium can be calculated when a quantitative calibration has been made beforehand. The detection limits for the pure elements are 0.07 ppm for uranium and 2 ppm for thorium with the minimum analyzing time being 2 min. The accuracy of the method is investigated by comparing results obtained by the method described here with results obtained by epithermal activation analysis.  相似文献   

16.
An extraction chromatography method with a column of microporous polyethylene supporting tri-n-octylamine /TNOA/ was used to separate uranium and thorium from zircon sands. The two elements were determined both by physical-chemical techniques /fluorimetry and colorimetry/ and by radiometric techniques /alpha spectrometry/ after electrodeposition: their respective contents agreed well; furthermore, uranium and thorium isotopes resulted in secular equilibrium in the analyzed material.  相似文献   

17.
A method for the determination of thorium in uranium concentrate by spectrophotometry with Arsenazo III has been developed. Preliminary solvent extraction procedures were used to eliminate interfering species. Samples were dissolved in nitric, perchloric and sulfuric acid and the uranium extracted from the solution using tri-octylamine. The aqueous layer was evaporated to dryness and the residue re-dissolved with hydrochloric acid, thorium was extracted by tri-n-octyl phosphine oxide and stripped with oxalic acid. For a typical uranium concentrate produced from the phosphate rock of Itataia, Brazil, concentrations of thorium as low as 5 g·g-1 can be determined.  相似文献   

18.
A simple method is described for the determination of uranium and thorium in gological materials. The samples are irradiated in a reactor with resonance and fast neutrons behind a cadmium filter. Compared with an irradiation with the whole reactor neutron spectrum, the matrix activities are reduced to about 1%, those of uranium (239Np) and thorium (233Pa) to about only 50 and 25%, respectively. This relative diminution of matrix activities allows the γ-measurement of239Np and233Pa as early as after two days' cooling time; in samples with high uranium contents the determination of233Pa requires one month's cooling time. This non-destructive procedure yields a detection limit of 0.1 ppm for uranium and thorium in samples of 200 mg, with an error of ±5%. Dedicated to ProfessorW. Borchert on the occasion of his 60th birthday.  相似文献   

19.
A biamperometric methodology for the sequential determination of thorium (Th) and uranium (U) was developed. In the sample solution containing Th and U, Th was first determined by complexometric titration based on the electrochemical behaviour of EDTA maintaining a potential of ≥200 mV between the twin Pt electrodes. This was followed by the redox titrimetric determination of U employing biamperometry to detect the end point. Prior to the determination of U, EDTA was destroyed by fuming with concentrated HClO4 to eliminate its interference in the U determination. The method was tested for the determination of Th and U in (Th, U) O2 samples containing 4 mg of Th and 2–8 mg of U, with precision and accuracy of better than 0.3 %.  相似文献   

20.
A method for the simultaneous, radiochemical neutron activation analysis of uranium and thorium at trace levels in biological materials is described, based on a technique known as LICSIR, in which a double neutron irradiation is employed. In the first, long irradiation233Pa (27.0 d) is induced by neutron capture on232Th and then the sample is cooled for several weeks. A second short irradiation to induce239U (23.5 m) is followed by a rapid sequential radiochemical separation by solvent extraction of239U with TBP and233Pa with TOPO. Chemical yields of239U and233Pa were measured for each sample aliquot using added235U and231Pa tracers from the -spectra of the separated fractions. The technique was validated by quality control analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号