首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The interaction of trans-RuCl2(PMe3)4 with R2Mg, depending on the reaction conditions and the alkyl groups gives either (C2H4)Ru(PMe3)4 or cis-Ru(H)(C2H5)(PMe3)4 for R = ethyl, and cis-Ru(H)(nC3H7(PMe3)4 for R = n-propyl. The interaction of Et2Mg with trans-RuX2(dmpe)2 (X = Cl, CO2Me) gives either cis-Ru(Et2)dmpe)2 for X = Cl or trans-Ru(Et)2(dmpe)2 for X = CO2Me. NMR data for (C2H4)Ru(PMe3)4 suggest that ethylene is bound in the η2 or metallocyclopropane form, which is confirmed by a single-crystal X-ray diffraction study. This shows a relatively long carbon-carbon bond distance of 1.44(1)Å between the “ethylene” carbons. The structure of cis-Ru(H)(C2H5)(PMe3)4 has also been confirmed by a single-crystal X-ray diffraction study. Possible mechanisms for the observed reactivities are considered.  相似文献   

4.
5.
The reaction of equimolar NO with the 16 electron molecule RuHCl(CO)L(2) (L = P(i)Pr(3)) proceeds, via a radical adduct RuHCl(CO)(NO) L(2), onward to form RuCl(NO)(CO)L(2) (X-ray structure determination) and RuHCl(HNO)(CO)L(2), in a 1:1 mole ratio. The HNO ligand, bound by N and trans to hydride, is rapidly degraded by excess NO. The osmium complex behaves analogously, but the adduct has a higher formation constant, permitting determination of its IR spectrum; both MHCl(CO)(NO)L(2) radicals are characterized by EPR spectroscopy, and DFT calculations on the Ru system show it to have a "half-bent" Ru-N-O unit with the spin density mainly on nitrogen. DFT (PBE) energies rule out certain possible mechanistic steps for forming the two products. A survey of the literature leads to the hypothesis that NO should generally be considered as a (neutral) Lewis base (2-electron donor) when it binds to a 16 electron complex which is resistant to oxidation or reduction, and that the resulting N-centered radical has a M-N-O angle of approximately 140 degrees, which distinguishes it from NO(-) (bent at <140 degrees ) and from NO(+) (>170 degrees ).  相似文献   

6.
Summary Single crystal structure determination of the title compound shows that the molecule contains a Mo-Mo quadruple bond [4Mo-Mo = 2.164(1) Å] between two atoms differing in both formal oxidation state (+ 1 and + 3) and coordination number (4 and 3). This combination of electronic and stereochemical asymmetry makes the compound quite unique within the general class of metalmetal multiply bonded species.  相似文献   

7.
8.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

9.
10.
The reduction of WCl4(PMe3)3 by sodium amalgam in presence of phenylacetylene gives W(PMe3)(PhCCH)3 (A). Reduction in presence of methylisocyanide gives W(PMe3)2(MeNC)4 (B), while in presence of excess PMe3 in tetrahydrofuran under hydrogen, WH2Cl2(PMe3)4 (C) is formed. The reaction of WCl2(PMe3)4 with methanol in tetrahydrofuran gives mixtures of WH2Cl2(PMe3)4 and WOC12(PMe3)3 (D).The structures of A, B, and D have been determined by X-ray diffraction.  相似文献   

11.
Summary The tetramethylthiourea (TMTU) complexes of cobalt(II) and nickel(II) halides have been studied in the solid state by electronic, i.r. and far i.r. spectroscopy and magnetochemically. The tetrahedral Co(TMTU)2X2 (X = Cl, Br, 1) and Ni(TMTU)2X2 (X = Cl, Br) complexes have normal magnetic moments, electronic spectra and crystal field parameters; Ni2 (TMTU)3I4 is diamagnetic. The cobalt complexes have normal (CoX) and (CoX) vibrational frequencies. Ni(TMTU)2Cl2 and Ni2(TMTU)3I4 have (NiX) frequencies corresponding to long or bridging Ni-X bonds, while Ni(TMTU)2Br2 has normal (NiBr) frequencies for terminal Ni-Br bonds. The (MS) frequencies are similar to those of cobalt(II) and nickel(II) complexes of other thioureas.  相似文献   

12.
Reaction of π-cyclopentadienylmolybdenum nitrosyl halide with CNR (R = alkyl) gives [(π-C5H5)Mo(NO)X2(CNR)] (X = Br or I), [Mo(NO)(CNR)5]X (X = I or PF6) and [Mo(NO)(CNR)4I]; treatment of [Mo(NO)(CNR)5]I with R′NH2 gives [Mo(NO)(CNR)4 {C(NHR)(NHR′)}]I or [Mo(NO)(CNR)4(NH2R′)]I (R′ = alkyl) depending on temperature.  相似文献   

13.
《Mendeleev Communications》2023,33(2):171-173
Crystal structure of widely employed precatalyst [Pd(Ph3P)4] is reported. It crystallizes in P-3 space group [a = 19.0828(8) and c = 26.4423(18) Å] with six molecules per unit cell. It is demonstrated that the phase purity of this important compound can now be routinely controlled via powder X-ray diffraction analysis.  相似文献   

14.
Wright AM  Wu G  Hayton TW 《Inorganic chemistry》2011,50(22):11746-11753
The reaction of [NO][PF(6)] with excess Ni powder in CH(3)NO(2), in the presence of 2 mol % NiI(2), results in the formation of [Ni(NO)(CH(3)NO(2))(3)][PF(6)] (1), which can be isolated in modest yield as a blue crystalline solid. Also formed in the reaction is [Ni(CH(3)NO(2))(6)][PF(6)](2) (2), which can be isolated in comparable yield as a pale-green solid. In the solid state, 1 exhibits tetrahedral geometry about the Ni center with a linear nitrosyl ligand [Ni1-N1-O1 = 174.1(8)°] and a short Ni-N bond distance [1.626(6) ?]. As anticipated, the weakly coordinating nitromethane ligands in 1 are easily displaced by a variety of donors, including Et(2)O, MeCN, and piperidine (NC(5)H(11)). More surprisingly, the addition of mesitylene to 1 results in the formation of an η(6)-coordinated nickel arene complex, [Ni(η(6)-1,3,5-Me(3)C(6)H(3))(NO)][PF(6)] (6). In the solid state, complex 6 exhibits a long Ni-C(cent) distance [1.682(2) ?], suggesting a relatively weak Ni-arene interaction, a consequence of the strong π-back-donation to the nitrosyl ligand. The addition of anisole to 1 also results in the formation of a η(6) nickel arene complex, [Ni(η(6)-MeOC(6)H(5))(NO)][PF(6)] (7). This complex also exhibits a long Ni-C(cent) distance [1.684(1) ?].  相似文献   

15.
16.
17.
18.
The interaction of the octacarboxy-substituted aluminum(III) phthalocyanines (hydroxo)(tetrakis(3,5-dicarboxy)- and (hydroxo)(tetrakis(4,5-dicarboxy)phthalocyaninato)aluminum(III) with sulfuric acid is reported. It has been demonstrated by computer simulation (PM3 method) and by studying the dependence of the electronic absorption spectra of the complexes in sulfuric acid on the acidity of the medium that ((OH)AlPc(4-COOH)4(5-COOH)4 has three protonated forms (mono-, di-, and trication) both in the gas phase and in concentrated sulfuric acid and (OH)AlPc(3-COOH)4(5-COOH)4 has three protonated forms in the gas phase and two ones in concentrated sulfuric acid. The destruction kinetics of the aluminum(III) phthalocyanines in hot sulfuric acid is investigated. A destruction mechanism is suggested in which the rate-limiting step is the dissociation of an Al-N bond and the transition state consists of one aluminum(III) phthalocyanine molecule and one hydronium ion. A stability series is established for a set of differently carboxy-substituted aluminum(III) phthalocyanines. The major factors in the stability of the complexes are the negative inductive effect and the number of carboxyl groups.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号