首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recently proposed local Fukui function is used to predict the binding site of atomic hydrogen on silicon clusters. To validate the predictions, an extensive search for the more stable SinH (n=3-10) clusters has been done using a modified genetic algorithm. In all cases, the isomer predicted by the Fukui function is found by the search, but it is not always the most stable one. It is discussed that in the cases where the geometrical structure of the bare silicon cluster suffers a considerable change due to the addition of one hydrogen atom, the situation is more complicated and the relaxation effects should be considered.  相似文献   

2.
The structure and harmonic vibrations of Be(n)O(n) (n=3-10) clusters have been investigated using density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1597 cm(-1) for n=10. Comparisons with C(2n) clusters and B(n)N(n) clusters, the structure and bonding type for the Be(n)O(n) clusters are consistent with those of the C(2n) (n=3, 5, 7, ...) clusters and the B(n)N(n) clusters.  相似文献   

3.
The structure and harmonic vibrations of Ga(n)N(n) (n = 3-10) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1029 cm(-1) for n = 10. Comparisons with C2n, B(n)N(n), and Al(n)N(n) clusters, the structure and bonding type for the Ga(n)N(n) (n=3-10) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters, the B(n)N(n) (n = 3-10), and Al(n)N(n) (n = 3-9) clusters.  相似文献   

4.
We carry out a systematic search for the atomic structures of silicon cluster cations and anions in the size range n=31-50 using density functional theory in the generalized-gradient approximation. The obtained lowest-energy candidates feature cagelike structures. We find that the computed binding energies and the dissociation pathways as well as the mobilities of our lowest-energy isomers of the cations are all in good agreement with the measured data from experiments. Furthermore, based on these isomers, we reveal that the steplike feature appearing in the measured high-resolution mobilities can be correlated with the corresponding fullerenes explicitly, which strongly support the notion that endohedral silicon fullerenelike structures are the most favored growth pattern for silicon clusters in the range n=31-50. Our calculation and analysis suggest that the proposed isomers are probably very close to the major-abundance isomers observed in experiments.  相似文献   

5.
Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the structural and electronic structure of Si(n)C(n) (n=1-10) clusters. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster size n equals 4. Cagelike structures are favored as the cluster size increases. A distinct segregation between the silicon and carbon atoms is observed for these clusters. It is found that the C atoms favor to form five-membered rings as the cluster size n increases. However, the growth motif for Si atoms is not observed. The Si(n)C(n) clusters at n=2, 6, and 9 are found to possess relatively higher stability. On the basis of the lowest-energy geometries obtained, the size dependence of cluster properties such as binding energy, HOMO-LUMO gap, Mulliken charge, vibrational spectrum, and ionization potential has been computed and analyzed. The bonding characteristics of the clusters are discussed.  相似文献   

6.
Structures, energetics, and vibrational spectra are investigated for small pure (TiO(2))(n), (SiO(2))(n), and mixed Ti(m)Si(n-m)O(2n) [n = 2-5, m = 1 to (n - 1)] oxide clusters by density functional theory (DFT). The BP86/ATZP level of theory is employed to obtain constitutional isomers of the oxide clusters. In accordance with previous studies, our calculations show three-dimensional compact structures are preferred for pure (TiO(2))(n) with oxo-stabilized higher hexavalent states, and linear chain structures are favored for pure (SiO(2))(n) with tetravalent states. However, the herein theoretically first reported mixed Ti(m)Si(n-m)O(2n) oxide clusters prefer either three-dimensional compact or linear chain structures depending upon the stoichiometry of the compound. Vibrational analysis of the important modes of some highly stable structures is provided. Coupled-cluster single and double excitation (with triples) [CCSD(T)] computed energy gaps for the TiO(2) dimers compare well with results from previous study. Excitation energies are computed by use of time-dependent (TD) DFT and equation-of-motion coupled-cluster calculations with singles and doubles (EOM-CCSD) for the most stable isomers.  相似文献   

7.
Using density functional theory (DFT) method with 6-31G* basis set, we have carried out the optimizing calculation of geometry, vibrational frequency and thermodynamical stability for(AIN)n+ and (AIN)n- (n =1-15) clusters. Moreover, their ionic potential (IP) and electron affinity(EA) were discussed. The results show that the electrical charge condition of the cluster has a relatively great impact on the structure of the cluster and with the increase of n, this kind of impactis reduced gradually. There are no AI-AI and N-N bonds in the stable structure of (AIN)n+ or (AIN)n-, and the AI-N bond is the sole bond type. The magic number regularity of (AIN)n+, and (AIN)n- is consistent with that for (AIN)n, indicating that the structure with even n such as 2, 4,6, … is more stable. In addition, (AIN)10 has the maximal ionization power (9.14 eV) and the minimal electron affinity energy (0.19 eV), which manifests that (AIN)10 is more stable than other clusters.  相似文献   

8.
Electronic and geometrical structures of Mn(3)-Mn(10) together with their singly negatively and positively charged ions are computed using density functional theory with generalized gradient approximation. The ground-state spin multiplicities in the neutral series are 16, 21, 4, 9, 6, 5, 2, and 5, for Mn(3)-Mn(10), respectively. Thus, there is a transition from a ferromagnetic ground state to a ferrimagnetic ground state at Mn(5). The energy difference between ferrimagnetic and ferromagnetic states in Mn(n) grows rapidly with increasing n and exceeds 2 eV in Mn(10). The corresponding change from ferro- to ferrimagnetic ground state occurs at Mn(6)(-) and Mn(3)(+) in the anionic and cationic series, respectively. Beginning with Mn(6), the ion spin multiplicities differ from that of the neutral by +/-1 (i.e., they obey the empirical "+/-1 rule"). We found that the energy required to remove an Mn atom is nearly independent of the charge state of an Mn(n) cluster and the number of atoms in the cluster, except for Mn(3). The results of our calculations are in reasonable agreement with experiment, except for the experimental data on the magnetic moments per atom, where, in general, we predict smaller values than the experiment.  相似文献   

9.
The structures and energies of Be(n)Si(n) and Be(2n)Si(n) (n = 1-4) clusters have been examined in ab initio theoretical electronic structure calculations. Cluster geometries have been established in B3LYP/6-31G(2df) calculations and accurate relative energies determined by the G3XMP2 method. The two atoms readily bond to each other and to other atoms of their own kind. The result is a great variety of low-energy clusters in a variety of structural types.  相似文献   

10.
The structural, electronic, vibrational, optical, magnetic, and aromatic characteristics of Si(n), Si(n) (1-), Si(n) (2-), and Si(n) (1+), clusters have been calculated very accurately with a variety of high level ab initio techniques. These calculations have been performed with the aim to clarify existing ambiguities in the literature and to bring up the fluxional and aromatic characteristics of these species. The fluxional behavior, according to earlier conjecture of the present author, could be connected to the magic property. In addition such behavior could also explain the existence of conflicting results. The ab initio techniques include quadratic configuration interaction, coupled cluster, and multireference second order perturbation theory, together with density functional theory ("static" and time dependent) with the hybrid B3LYP functional. Various high quality correlation-consistent basis sets, ranging from 2Z up to 5Z quality, were employed. It is demonstrated that Si(6) is fluxional, fluctuating around a symmetric D(4h) structure. Si(10) is also fluxional but to a lesser degree, in contrast to Si(10) (1-) anion which is highly fluxional. For both clusters, in full agreement with Wade's and Lipscomb's rules for deltahedral boranes, the corresponding dianions have higher symmetry (O(h) and D(4d), respectively) and lower energy than the neutral clusters. The aromatic behavior of Si(6) fits better to a mixed conflicting aromaticity picture. This type of aromatic and fluxional behavior has also been observed in stable "magic" carbon clusters as C(6) and carbon fullerenes such as C(20). The present results, which support possible connection of fluxional and magic properties, are in excellent agreement with experimental measurements of ionization energies, electron affinities, and vibrationally resolved photoelectron spectra.  相似文献   

11.
The adsorption properties of a single CO molecule on Sc(n) (n=2-13) clusters are studied by means of a density functional theory with the generalized gradient approximation. Two adsorption patterns are identified. Pattern a (n=3, 4, 6, 8, 11, and 12), CO binds to hollow site while Pattern b (n=5, 7, 9, 10, and 13), CO binds to bridge site accompanied by significantly lengthening of the Sc-Sc bond. The adsorption energy exhibits clear size-dependent variation and odd-even oscillation for n<10 and reach the peak at n=5, 7, and 9, implying their high chemical reactivity. Similar variations are noted in C-O bond length, vibrational frequency, and charge transferred between CO and the clusters. This can be understood in light of the adsorption pattern, the atomic motif, and the relative stability of the bare Sc clusters. Compared with the free Sc clusters, the magnetic nature remains upon adsorption except n=2, 4, 12, and 13. Particularly, the moments of n=13 reduce significantly from 19 to 5 micro(B), implying the adsorption plays an attenuation influence on the magnetism of the cluster.  相似文献   

12.
The stable structures, energies, and electronic properties of neutral, cationic, and anionic clusters of Al(n) (n = 2-10) are studied systematically at the B3LYP/6-311G(2d) level. We find that our optimized structures of Al5(+), Al9(+), Al9(-), Al10, Al10(+), and Al10(-) clusters are more stable than the corresponding ones proposed in previous literature reports. For the studied neutral aluminum clusters, our results show that the stability has an odd/even alternation phenomenon. We also find that the Al3, Al7, Al7(+), and Al7(-) structures are more stable than their neighbors according to their binding energies. For Al7(+) with a special stability, the nucleus-independent chemical shifts and resonance energies are calculated to evaluate its aromaticity. In addition, we present results on hardness, ionization potential, and electron detachment energy. On the basis of the stable structures of the neutral Al(n) (n = 2-10) clusters, the Al(n)O (n = 2-10) clusters are further investigated at the B3LYP/6-311G(2d), and the lowest-energy structures are searched. The structures show that oxygen tends to either be absorbed at the surface of the aluminum clusters or be inserted between Al atoms to form an Al(n-1)OAl motif, of which the Al(n-1) part retains the stable structure of pure aluminum clusters.  相似文献   

13.
We have performed density functional calculations for the structure and stability of Al(13)H(n) (n=1-13) clusters. Population analysis has shown significant charge transfer occurring from the Al cluster to the H atoms. The population for Al(13) varies from 0.24 (Al(13)H) to 2.83 (Al(13)H(13)). The shape of Al(13) moieties in the Al(13)H(n) (n>/=8) clusters is significantly distorted from the icosahedral structure of Al(13) and is a "cagelike" form. Al(13)H(13) has a capped icosahedron as the ground-state structure, similar to B(13)H(13), while the shape of B(13) (planar) is different from Al(13) (icosahedral). The Al(13)H(13) cluster is predicted to be exceptionally stable on the basis of the high stabilization energy and the negative nucleus independent chemical shift value.  相似文献   

14.
We performed an unbiased search for low-energy structures of medium-sized neutral Si n and Ge n clusters ( n = 25-33) using a genetic algorithm (GA) coupled with tight-binding interatomic potentials. Structural candidates obtained from our GA search were further optimized by first-principles calculations using density functional theory (DFT). Our approach reproduces well the lowest-energy structures of Si n and Ge n clusters of n = 25-29 compared to previous studies, showing the accuracy and reliability of our approach. In the present study, we pay more attention to determine low-lying isomers of Si n and Ge n ( n = 29-33) and study the growth patterns of these clusters. The B3LYP calculations suggest that the growth pattern of Si n ( n = 25-33) clusters undergoes a transition from prolate to cage at n = 31, while this transition appears at n = 26 from the PBE-calculated results. In the size range of 25-33, the corresponding Ge n clusters hold the prolate growth pattern. The relative stabilities and different structural motifs of Si n and Ge n ( n = 25-33) clusters were studied, and the changes of small cluster structures, when acting as building blocks of large clusters, were also discussed.  相似文献   

15.
Structure and stability of (AlN)n clusters   总被引:3,自引:0,他引:3  
AIN and Al2N2 have been observed in the record of time-of-flight mass-spectra as positive ions. Associating with density functional theory(DFT) B3LYP method with 6-31G* basis set, we have carried out the optimizing calculations of the geometry, electronic state and vibrational frequency for (AIN)n (n = 1-15) clusters, moreover, discussed the character of the chemical bond and thermodynamical stability and explained the experimental mass spectra. The results show that there do not exist AI-AI and N-N bonds and only exists AI-N bond in the ground state structures of (AIN)n clusters; and the "magical number" regularity of (AIN)n is those whose atom number Is 4, 8, 12,16, 20, etc, all of which are times of four.  相似文献   

16.
Structure and vibrations of AlnNn (n = 3-9) clusters   总被引:1,自引:0,他引:1  
The structure and harmonic vibrations of Al(n)N(n) (n = 3-9) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out-of-plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1217 cm(-1) for n = 9. Comparisons with C2n clusters and B(n)N(n) clusters, the structure and bonding type for the Al(n)N(n) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters and the B(n)N(n) clusters.  相似文献   

17.
The geometries, stabilities, electronic properties, and magnetism of FeB(n) clusters up to n=10 are systematically studied with density functional theory. We find that our optimized structures of FeB(2), FeB(3), FeB(4), and FeB(5) clusters are more stable than those proposed in previous literature. The results show that it is favorable for the Fe atom to locate at the surface, not at the center of the cluster, and that FeB(4) and FeB(9) clusters exhibit high stability. For all the FeB(n) clusters studied, we find the charge transfer from Fe to B site and the coexistence of ionic and covalent bonding characteristics. The computed total magnetic moments of the lowest-energy structures oscillate with the cluster size and are quenched at n=4, 6, 8, and 10.  相似文献   

18.
The geometry, electronic configurations, harmonic vibrational frequencies, and stability of the structural isomers of aluminum phosphide clusters have been investigated using the density functional theory. For dimers and trimers, the lowest energy structures are cyclic (IIs, IIIs) with D(nh) symmetry. The caged structure with Td symmetry (Xs) lie lowest in energy among the tetramers. The Al--P bond dominates the structures for many isomers so that one preferred dissociation channel is loss of the AlP monomer. The hybridization and chemical bonding in the different structures are also discussed. Comparisons with silicon and boron nitride clusters, the ground state structures of Al(n)P(n) clusters are analogous to those of their corresponding Si(2n) counterparts. This similarity follows the isoelectronic principle.  相似文献   

19.
Equilibrium geometries and electronic properties of binary transition-metal clusters, (NbCo)n (n < or = 5), have been investigated by means of the relativistic density-functional approach. The metal-metal bonding and stability aspects of these clusters have been analyzed on the basis of calculations. Present results show that these clusters exhibit rich structural varieties on the potential-energy surfaces. The most stable structures have a compact conformation in relatively high symmetry, in which the Nb atoms prefer to form an inner core and Co atoms are capped to the facets of the core. Such building features in clustering of the Nb/Co system are related to the order of bond strength: Nb-Nb>Nb-Co>Co-Co. As the binary cluster size increases, the Nb-Co bond may become stronger than the Nb-Nb bond in the inner niobium core, which results in a remarkable increment of the Nb-Nb bond length. Amongst these binary transition-metal clusters, the singlet (NbCo)4 in T(d) symmetry has a striking high stability due to the presence of the spherical aromaticity and electronic shell closure. The size dependence of the bond length and stability of the cluster has been explored.  相似文献   

20.
Using density functional theory (DFT) method with 6-31G* basis set, we have carried out the optimizing calculation of geometry, vibrational frequency and thermodynamical stability for (AlN) n + and (AlN) n + (n=1–15) clusters. Moreover, their ionic potential (IP) and electron affinity (EA) were discussed. The results show that the electrical charge condition of the cluster has a relatively great impact on the structure of the cluster and with the increase of n, this kind of impact is reduced gradually. There are no Al-Al and N-N bonds in the stable structure of (AlN) n + or (AlN) n -, and the Al-N bond is the sole bond type. The magic number regularity of (AlN) n + and (AlN) n - is consistent with that for (AlN) n , indicating that the structure with even n such as 2, 4, 6, ... is more stable. In addition, (AlN10 has the maximal ionization power (9.14 eV) and the minimal electron affinity energy (0.19 eV), which manifests that (AlN)10 is more stable than other clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号