共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(11):2941-2944
Iron is one of the essential trace elements in the human body. It plays an important role in human biology and pathology. Deregulation of iron levels in cells is associated with disease development. In this work, we synthesized a novel near-infrared intramolecular charge transfer (ICT) based ratiometric fluorescent probe to detect Fe2+, by using naphthalimide and indole moieties as building blocks. Our work showed that the radiometric probe has excellent selectivity, sensitivity and rapid response. Moreover, we could successfully perform real-time monitoring of Fe2+ in HeLa cells and C. elegans. 相似文献
2.
Donor-pi-acceptor fluorene derivative 1c is a near-neutral pH indicator whose pKa of approximately 7.0 was determined by both absorption and fluorescence methods. 1c satisfies important criteria for a sensitive ratiomeric fluorescent pH indicator with a distinctive isoemissive point, good dispersion in cell cytosol, and low cytotoxicity. Furthermore, its 2PA cross section of 100 GM in its neutral form suggests its potential in two-photon fluorescence imaging applications. 相似文献
3.
A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion 总被引:1,自引:0,他引:1
A water-soluble fluorescent sensor, 1, based on the quinoline platform, demonstrates femtomolar sensitivity for zinc ion with a 14-fold enhanced quantum yield upon chelation to zinc ion and also exhibits high selectivity to zinc ion over other physiological relevant divalent metals in the presence of EDTA. X-ray crystal structure of zinc complex reveals that an acetic carboxylic group participates in coordination, which significantly enhances the affinity of 1 for zinc ion. 相似文献
4.
Lina Huang Yu Chen Yuqiang Zhao Yumin Wang Junwei Xiong Junfeng Zhang Xianghua Wu Ying Zhou 《中国化学快报》2021,31(11):2941-2944
Iron is one of the essential trace elements in the human body. It plays an important role in human biology and pathology. Deregulation of iron levels in cells is associated with disease development. In this work, we synthesized a novel near-infrared intramolecular charge transfer (ICT) based ratiometric fluorescent probe to detect Fe2+, by using naphthalimide and indole moieties as building blocks. Our work showed that the radiometric probe has excellent selectivity, sensitivity and rapid response. Moreover, we could successfully perform real-time monitoring of Fe2+ in HeLa cells and C. elegans. 相似文献
5.
Bis-pyrene derivative 1, bearing two pyrene and pyridine groups, was synthesized as a ratiometric fluorescent chemosensor for Ag(+) in aqueous solution. Fluorescent chemosensor 1 displayed a selective ratiometric change with Ag(+), which was attributed to the excimer-monomer emissions of pyrenes. A mechanism for the binding mode was proposed based on fluorescence changes, NMR experiments, and theoretical calculations. 相似文献
6.
A novel chemosensing ensemble that exhibits sensitive and selective recognitions of pyrophosphate in 100% aqueous solution at physiological pH has been developed. The chemosensing ensemble was constructed by a dinuclear Zn(II) complex of 2,6-bis[(bis(2-benzimidazolylmethyl)amino)methyl]-p-cresol and sodium fluorescein, the receptor–indicator pair is able to highly selectively discriminate pyrophosphate from phosphate and other anions in water at physiological pH. 相似文献
7.
Banerjee A Sahana A Das S Lohar S Guha S Sarkar B Mukhopadhyay SK Mukherjee AK Das D 《The Analyst》2012,137(9):2166-2175
2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT). 相似文献
8.
A novel water-soluble fluorescent probe, monosodium 7-(4,6-dichloro-1,3,5-triazinylamino)-1,3-naphthalenedisulfonic acid (DTND), was synthesized by reacting cyanuric chloride with 7-amino-1,3-naphthalenedisulfonic acid monopotassium salt at 0-5 degrees C. This new reagent was used for the determination of methylamine. The linear range is 3x10(-6)-2x10(-4) mol L(-1) with a detection limit (S/N=3) of 7.2x10(-8) mol L(-1), and the relative S.D. is 1.3% for ten replicate determinations of 1x10(-5) mol L(-1) CH3NH2. Common species in the aqueous environment have no or only slight influence on the determination. The method can be used to determine methylamine in real water samples. 相似文献
9.
In a neutral aqueous environment, a new ratiometric Cd2+ fluorescent sensor 1a can successfully discriminate Cd2+ from Zn2+ by undergoing two different internal charge transfer (ICT) processes, and the high selectivity of sensor 1a to Cd2+ over some other metals was also observed. Moreover, through structure derivation and a series of NMR studies, the unique role of the 2-picolyl group (the part in red in the abstract graphic) in the sensor 1a-Cd2+ complexation was disclosed. 相似文献
10.
In this paper, we report the development of a reversible pH sensor in aqueous medium based on the fluorescence properties of a polythiophene-gold nanoparticle (Au NP) composite. The composite was synthesized in water by simultaneous reduction of HAuCl(4) to Au NPs and polymerization of thiophene in the presence of no additional reagents. It was stable for weeks and had characteristic emissions, which changed in the pH range of 3.0 to 6.0, thus providing a mean for probing the pH of an aqueous solution. Measurement of the pH could be performed over several cycles of titrations, pointing to the robustness of the materials for such sensing applications. The mass spectra of the composite at two extreme pH values were identical, indicating that the primary structure of the polymer was not affected due to changes in pH of the medium. Transmission electron microscopic (TEM) measurements indicated the presence of small sized Au NPs with the polymer in the milieu. The composite could be titrated by acid (or base) and considering the acid-base equilibria at different pHs, we have been able to calculate the pK(eq) of the composite, which was further used in calculating the pH of an aqueous solution from the emission spectrum of the composite. Our approach took advantage of redox chemistry in synthesizing the water-soluble composite and the optical behavior of a conjugated polymer in developing an important pH sensor, which may form the basis of further development of versatile pH or other sensors by suitably modifying the backbone of the monomer. 相似文献
11.
Burguete MI Galindo F Luis SV Vigara L 《Dalton transactions (Cambridge, England : 2003)》2007,(36):4027-4033
A turn-on fluorescent indicator for citric acid (citrate) has been developed, displaying high emission enhancement (+1500%) and low interference by other carboxylates. The sensor is based on the non-emissive copper(II) complex of a fluorescent amino amide, which, upon addition of citrate decomplexates to yield the emissive ligand. The detection limit estimated for this new chemosensing system is about 0.5 microM. This novel approach to the analysis of citrate constitutes an alternative ca. 10(2)-10(3) times more sensitive than the standard method based on the enzyme citrate lyase. 相似文献
12.
Salicylaldehyde hydrazones of 1 and 2 were synthesized and their potential as fluorescent probes for zinc ion was investigated in this paper. Both of the probes were found to show fluorescence change upon binding with Zn2+ in aqueous solutions, with good selectivity to Zn2+ over other metal ions such as alkali/alkali earth metal ions and heavy metal ions of Pb2+, Cd2+ and Hg2+. They showed 1:2 metal-to-ligand ratio when their Zn2+ complex was formed. By introducing pyrene as fluorophore, 2 showed interesting ratiometric response to Zn2+. Under optimal condition, 2 exhibited a linear range of 0-5.0 μM and detection limit of 0.08 μM Zn2+ in aqueous buffer, respectively. The detection of Zn2+ in drinking water samples using 2 as fluorescent probe was successful. 相似文献
13.
Yongli Liu 《International journal of environmental analytical chemistry》2017,97(12):1119-1131
In present work, fluorescent carbon dots (CDs) with an average diameter of 2.5 nm were firstly synthesised by a simple, convenient and low-cost hydrothermal method from chocolate. The obtained CDs possessed fine monodispersity and bright blue fluorescence that was strongest at an excitation wavelength of 360 nm and had a comparable quantum yield of 12% (in case of dots prepared in presence of nitric acid). The emission peak depended on the excitation wavelength in the range from 320 to 440 nm. Ionic strength had a weak effect up to 1.0 M and then no significant change was found in the range of 1.0–4.5 M. The fluorescence intensity of CDs displayed good pH adaptability and a linear dependence on the pH change in the range of pH 1.0–3.0 and pH 9.0–12.5, which have promising potentials for pH sensor. 相似文献
14.
A fluorescent chemosensor for wide-range pH detection 总被引:1,自引:0,他引:1
Simple polyamines, L1-L3, bearing anthracene and benzophenone units at the respective ends, behave as a fluorescent pH sensor applicable to wide-range pH detection. 相似文献
15.
Ahmed N Shirinfar B Youn IS Bist A Suresh V Kim KS 《Chemical communications (Cambridge, England)》2012,48(21):2662-2664
A new water-soluble and fluorescent imidazolium-anthracene cyclophane 1 effectively recognizes and differentiates the biologically important GTP and ATP in 100% aqueous solution of physiological pH 7.4. Fluorescence, (1)H-NMR spectra and ab initio calculations demonstrate that excimer formation and fluorescence enhancement occur upon GTP and ATP binding, respectively, through (C-H)(+)···A(-) hydrogen bond interactions. 相似文献
16.
17.
Yangyang Yang Chen Zhang Rizhao Pan Shiwei Zhang Shengtao Yao Yao Tang Weilong Zhu Liyue Wang Weiping Zhu Yufang Xu Xuhong Qian 《中国化学快报》2020,31(1):125-128
Alkaline phosphatase(ALP)is one of essential biomarkers in mammalian tissue.Here we report a ratiometric probe for ALP,which is rationally designed and synthesized by employing ESIPT fluorophore N-(3-(benzo[d]thiazol-2-yl)-4-hydroxyphenyl)benzamide(BTHPB).The enzymatic dephosphorylation converts the probe to BTHPB,which exhibits a large spectral red-shift(120 nm),allowing extremely high sensitivity of ALP sensing at 0.004 mU/mL.The probe also shows excellent biocompatibility and has been applied for monitoring the endogenic ALP in living cells. 相似文献
18.
A highly water soluble fluorescent probe was developed for sensitive and selective detection of biothiols with a red emission and a large Stokes shift. The probe was successfully applied to detect biothiols both in aqueous solution and in living cells. 相似文献
19.
A novel "naked-eye" and ratiometric fluorescent zinc sensor (AQZ) of carboxamidoquinoline with an alkoxyethylamino chain as receptor was designed and synthesized. AQZ shows good water solubility and high selectivity for sensing; about an 8-fold increase in fluorescence quantum yield and a 75 nm red-shift of fluorescence emission upon binding Zn2+ in buffer aqueous solution are observed. Moreover, AQZ can enter yeast cells and signal the presence of Zn2+. 相似文献
20.
Zhi-Xiang Han Bo-Song Zhu Tong-Liang Wua Qing-Qing Yang Yong-Lai Xue Zhen Zhang Xiang-Yang Wua 《中国化学快报》2014,25(1):73-76
In this paper, 2-carboxybenzaldehyde rhodamine B thiohydrazine(1) was synthesized and developed as a fluorescent probe to recognize Hg2+in DMF/H2 O(1:9, v/v) solution with high selectivity. The probe can be applied to the quanti?cation of Hg2+with a linear concentration range covering from 1.0×10-7mol/L to 1.0×10-5mol/L(R2= 0.9985) and a detection limit of 4.2×10-8mol/L. The experiment results show that the response of probe 1 to Hg2+is pH-independent in a wide range from 4.0 to 9.0. Moreover, the probe 1 exhibits excellent selectivity toward Hg2+over other common metal cations. Most importantly, the probe can be employed to monitor Hg2+in living cells using fluorescent imaging technique with satisfied results. 相似文献