共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrafast two-dimensional infrared spectroscopy and molecular dynamics simulations of Mn(2)(CO)(10) in a series of linear alcohols reveal that the rate of intramolecular vibrational redistribution among the terminal carbonyl stretches is dictated by the average number of hydrogen bonds formed between the solute and solvent. The presence of hydrogen bonds was found to hinder vibrational redistribution between eigenstates, while leaving the overall T(1) relaxation rate unchanged. 相似文献
2.
Previous state-selected spectra of methanol in the 5nu(1) OH stretch overtone region [O. V. Boyarkin, T. R. Rizzo, and D. S. Perry, J. Chem. Phys. 110, 11346 (1999)] revealed a structure indicating an intramolecular vibrational redistribution on three time scales. Whereas in that work, methanol in the 5nu(1) bright state was prepared close to the staggered conformation, methanol in the "partially eclipsed" conformation is prepared here by double resonance excitation through a torsionally excited intermediate state. The excited molecules are detected by infrared laser assisted photofragment spectroscopy. In partially eclipsed methanol, the strong coupling of the nu(1) OH stretch to the nu(2) CH stretch becomes weaker, but the coupling responsible for the widths of the narrowest features becomes stronger. 相似文献
3.
The jet-cooled fluorescence spectra of perylene excited to the S1 state with Evib = 0–1600 cm?1 are recorded and analyzed. For Evib <800 cm?1 only the resonant fluorescence was detected. Ground- and excited-state frequencies of 14 low-frequency normal modes are determined. A drastic change in frequency of the “butterfly” modes upon electronic excitation shows that perylene slightly deviates from planarity in its ground state and is more rigid in the excited singlet state. For a number of levels in the Evib = 800–1600 cm?1 range, the fluorescence is composed of the resonant emission and of non-resonant (“‘relaxed’”) bands. It is shown that apparently single bands in the fluorescence-excitation spectrum correspond to ovelapping bands pumping different molecular eigenstates resulting from the intrastate coupling. The relative role of the anharmonicity and of the Coriolis interaction are discussed. The data are treated in terms of a selective coupling between doorway and hallway states with the coupling constant rapidly decreasing with the difference in the overall vibrational quantum number between initial and final state. 相似文献
4.
Evidence is presented which indicate that the second-order Coriolis interaction play an important role in intramolecular vibrational redistribution. 相似文献
5.
Theoretical investigation of intramolecular vibrational energy redistribution in highly excited HFCO
The present paper is devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) in HFCO initiated by an excitation of the out-of-plane bending vibration [nnu(6)=2,4,6,...,18,20]. Using a full six-dimensional ab initio potential energy, the multiconfiguration time-dependent Hartree (MCTDH) method was exploited to propagate the corresponding six-dimensional wave packets. This study emphasizes the stability of highly excited states of the out-of-plane bending mode which exist even above the dissociation threshold. More strikingly, the structure of the IVR during the first step of the dynamics is very stable for initial excitations ranging from 2nu(6) to 20nu(6). This latter result is consistent with the analysis of the eigenstates obtained, up to 10nu(6), with the aid of the Davidson algorithm in a foregoing paper [Iung and Ribeiro, J. Chem. Phys. 121, 174105 (2005)]. The present study can be considered as complementary to this previous investigation. This paper also shows how MCTDH can be used to predict the dynamical behavior of a strongly excited system and to determine the energies of the corresponding highly excited states. 相似文献
6.
Hedley GJ Ruseckas A Liu Z Lo SC Burn PL Samuel ID 《Journal of the American Chemical Society》2008,130(36):11842-11843
Ultrafast luminescence spectroscopy has been undertaken on three iridium cored phosphorescent complexes, with the Ir(ppy)3 molecule being compared with two Ir(ppy)3 cored dendrimers. Energy dissipation by intramolecular vibrational redistribution (IVR) and cooling shows as a luminescence decay because it decreases the admixture of singlet character to the emitting triplet state. A larger amount of vibrational energy dissipates by IVR in dendrimer complexes. We have therefore found a methodology of obtaining unambiguous information on the IVR process and show its potential to study IVR rates as a function of vibrational energy. 相似文献
7.
The four-dimensional model Hamiltonian of Wang and Perry [J. Chem. Phys. 109, 10795 (1998)] is used to compare the approximate adiabatic separation of the torsion and CH stretches in methanol to an exact solution of the same Hamiltonian. The adiabatic approximation accounts for the pattern of the energy levels in the lowest torsional states, including the inverted tunneling splittings, but does not account for the pattern of systematic two- and four-fold near degeneracies at high torsional excitation. In the adiabatic basis, the nonadiabatic couplings mix the torsional and vibrational degrees of freedom and hence are a source for intramolecular vibrational redistribution (IVR). These IVR matrix elements are found to decrease by only a factor of 2 or 3 with each higher coupling order, in agreement with the results of Pearman and Gruebele [Z. Phys. Chem. Munich 214, 1439 (2000)]. This gentle scaling behavior, which contrasts with a steeper falloff with coupling order in more rigid molecules, points to a more important role for direct high-order couplings in torsional molecules. In this model, the scaling behavior derives from a single coupling term that is low order in the torsional angular momentum in combination with one-dimensional torsional functions that include contributions from many torsional angular momenta. 相似文献
8.
Nunn AD Minns RS Spesyvtsev R Bearpark MJ Robb MA Fielding HH 《Physical chemistry chemical physics : PCCP》2010,12(48):15751-15759
We report a femtosecond time-resolved photoelectron spectroscopy (TRPES) investigation of internal conversion in the first two excited singlet electronic states of styrene. We find that radiationless decay through an S(1)/S(0) conical intersection occurs on a timescale of ~4 ps following direct excitation to S(1) with 0.6 eV excess energy, but that the same process is significantly slower (~20 ps) if it follows internal conversion from S(2) to S(1) after excitation to S(2) with 0.3 eV excess energy (0.9 eV excess energy in S(1)). 相似文献
9.
We present here high-resolution fluorescence excitation spectra of the 1202 band of pyrimidine in a molecular beam, which provide compelling ev 相似文献
10.
《Chemical physics letters》1985,117(5):489-494
A method is proposed for the selective elimination of intramolecular vibrational redistribution (IVR) in polyatomic molecules by using a strong resonant laser excitation. When the Rabi frequency is larger than the frequency spread of an isolated group of molecular eigenstates, IVR processes are totally suppressed, and the molecule simply oscillates between the ground state and the doorway state. The method may have direct implications on laser-selective chemistry. 相似文献
11.
García-Vela A 《The Journal of chemical physics》2007,126(12):124306
Quantum-mechanical simulations of the Ne-Br(2)(B,v') excitation spectra produced after vibrational predissociation in the v'=20-35 range are reported. The aim is to investigate the signature in the excitation spectra of intermediate resonances lying in the lower v相似文献
12.
Nancy S. True 《Chemical physics letters》1983,101(3):326-330
Some molecules with more than 10 atoms and more than two torsional degrees of freedom have state densities sufficient for rapid (1010 s?1) intramolecular vibrational redistribution at energies as low as 0.25 kcal/mol. Predicted features of low-resolution microwave (LRMW) band spectra of rapidly relaxing polar prolate molecules are discussed and compared with LRMW spectra of ethyl esters. 相似文献
13.
Experimental data for the photoisomerization of trans-stilbene (S(1)) in thermal bath gases at pressures up to 20 bar obtained previously by Meyer, Schroeder, and Troe (J. Phys. Chem. A 1999, 103, 10528-10539) are modeled by using a full collisional-reaction master equation that includes non-RRKM (Rice-Ramsperger-Kassel-Marcus) effects due to slow intramolecular vibrational energy redistribution (IVR). The slow IVR effects are modeled by incorporating the theoretical results obtained recently by Leitner et al. (J. Phys. Chem. A 2003, 107, 10706-10716), who used the local random matrix theory. The present results show that the experimental rate constants of Meyer et al. are described to within about a factor of 2 over much of the experimental pressure range. However, a number of assumptions and areas of disagreement will require further investigation. These include a discrepancy between the calculated and experimental thermal rate constants near zero pressure, a leveling off of the experimental rate constants that is not predicted by theory and which depends on the identity of the collider gas, the need to use rate constants for collision-induced IVR that are larger than the estimated total collision rate constants, and the choice of barrier-crossing frequency. Despite these unsettled issues, the theory of Leitner et al. shows great promise for accounting for possible non-RRKM effects in an important class of reactions. 相似文献
14.
By use of an analytic potential energy surface developed in this work for nitric acid, the quasi-classical trajectory method was used to simulate intramolecular vibrational energy redistribution (IVR). A method was developed for monitoring the average vibrational energy in the OH (or OD) mode that uses the mean-square displacement of the bond length calculated during the trajectories. This method is effective for both rotating and nonrotating molecules. The calculated IVR time constant for HONO(2) decreases exponentially with increasing excitation energy, is almost independent of rotational temperature, and is in excellent agreement with the experimental determination (Bingemann, D.; Gorman, M. P.; King, A. M.; Crim, F. F. J. Chem.Phys. 1997, 107, 661). In DONO(2), the IVR time constants show more complicated behavior with increasing excitation energy, apparently due to 2:1 Fermi-resonance coupling with lower frequency modes. This effect should be measurable in experiments. 相似文献
15.
Ab initio classical trajectory calculations have been applied to the intramolecular vibrational energy redistribution process of an O-H stretching vibration for phenol cation, [phenol]+, and its hydrogen-bonded water complex, [phenol-water]+. In phenol cation, a single narrow peak in the power spectrum, obtained by Fourier transformation of the autocorrelation function of its total momentum, indicates that the initial energy given to the O-H stretching oscillator of the phenol moiety is conserved and no energy flow occurs. On the other hand, for phenol-water cation, the calculated broadened power spectrum implies that the initial energy is not conserved and the energy flow causes an energy redistribution among various vibrational modes. 相似文献
16.
Hammond CJ Ayles VL Bergeron DE Reid KL Wright TG 《The Journal of chemical physics》2006,125(12):124308
We employ zero-kinetic-energy (ZEKE) photoelectron spectroscopy with nanosecond laser pulses to study intramolecular vibrational redistribution (IVR) in S(1) para-fluorotoluene. The frequency resolution of the probe step is superior to that obtained in any studies on this molecule to date. We focus on the behavior of the 13(1) (C-CH(3) stretch) and 7a(1) (C-F stretch) vibrational states whose dynamics have previously received significant attention, but with contradictory results. We show conclusively that, under our experimental conditions, the 7a(1) vibrational state undergoes significantly more efficient IVR than does the 13(1) state. Indeed, under the experimental conditions used here, the 13(1) state undergoes very little IVR. These two states are especially interesting because their energies are only 36 cm(-1) apart, and the two vibrational modes have the same symmetry. We discuss the role of experimental conditions in observations of IVR in some detail, and thereby suggest explanations for the discrepancies reported to date. 相似文献
17.
Intramolecular vibrational energy redistributions of the O-H stretching (nuOH) vibration for the methanol monomer and its water complex, the methanol-water dimer, are investigated by using ab initio full-dimensional classical trajectory calculations. For the methanol monomer, in the high-energy regime of the 5nuOH overtone, the time dependence of the normal-mode energies indicates that energy flowed from the initial excited O-H stretching mode to the C-H stretching mode. This result confirms the experimental observation of energy redistribution between the O-H and C-H stretching vibrations [L. Lubich et al., Faraday Discuss. 102, 167 (1995)]. Furthermore, a lot of dynamical information in the time domain is contained in the power spectra, whose density is given by the Fourier transformation of the total momentum obtained from trajectory calculations. For the methanol-water hydrogen-bonded complex, at the high-energy level of the 5nuOH overtone, the calculated power spectrum shows considerable splitting and broadening, indicating significant energy redistribution through strong coupling between the O-H stretching vibration and other vibrations. It is thus clear that the A-H...B hydrogen-bond formation facilitates energy redistribution subsequent to the vibrational excitation of the hydrogen-bonded A-H stretching mode. 相似文献
18.
Coherent control of radiationless transitions is developed and applied to internal conversion. Conditions for active versus passive control are described and overlapping resonances are shown necessary for the phase control of radiationless transitions in molecular systems. Applications to pyrazine show the possibility of extensive control via optimized state preparation, as well as the significant role of overlapping resonances, even in the evolution of single vibrational states in S2. 相似文献
19.
A previously developed modified Davidson scheme [C. Iung and F. Ribeiro, J. Chem. Phys. 121, 174105 (2005)] is applied to compute and analyze highly excited (nu2,nu6) eigenstates in DFCO. The present paper is also devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) initiated by an excitation of the out-of-plane bending vibration (nnu6, n=2,4,6, . . . ,18, and 20). The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. A comprehensive comparison with experimental data as well as with previous simulations of IVR in HFCO [G. Pasin et al. J. Chem. Phys. 124, 194304 (2006)] is presented. 相似文献
20.
The role of ring torsion in the enhancement of intramolecular vibrational energy redistribution (IVR) in aromatic molecules was investigated by conducting excitation and dispersed fluorescence spectroscopy of 1,1'-binaphthyl (1,1'-BN) and 2,2'-BN. The dispersed fluorescence spectra of 1,1'-BN in the origin region of S(1)-S(0) were well resolved, which presented 25-27 cm(-1) gaps of torsional mode in the ground state. The overall profile of the dispersed spectra of 1,1'-BN is similar to that of naphthalene. In contrast, the spectra of 2,2'-BN were not resolved due to the multitude of the active torsional modes. In both cases, dissipative IVR was observed to take place with a relatively small excess vibrational energy: 237.5 cm(-1) for 1,1'-BN and 658 cm(-1) for 2,2'-BN, which clearly shows that ring torsion efficiently enhances the IVR rate. Ab initio and density functional theory calculations with medium-sized basis sets showed that the torsional potential of 1,1'-BN has a very flat minimum over the range of torsional angles from ca. 60° to 120°, whereas that of 2,2'-BN showed two well-defined potential minima at ca. 40° and 140°, in resemblance to the case of biphenyl. In this work, we propose that aromatic molecules be classified into "strong" and "weak" torsional hindrance cases: molecules with strong hindrance case show shorter torsional progressions and more effective IVR dynamics than do those with weak hindrance. 相似文献