首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We present a theoretical development of the equations required to perform an analytic geometry optimization of a molecular system using the XYG3 type of doubly hybrid (xDH) functionals. In contrast to the well‐established B2PLYP type of DH functionals, the energy expressions in the xDH functionals are constructed by using density and orbital information from another standard Kohn–Sham (KS) functional (e.g., B3LYP) for doing the self‐consistent field calculations. Thus, the xDH functionals are nonvariational in both the hybrid density functional part and the second‐order perturbation part, each of which requires formally to solve a coupled‐perturbed KS equation. An implementation is reported here which combines the two parts by defining a total Lagrangian such that only a single set of the Z‐vector equations need to be solved. The computational cost with our implementation is of the same order as those for the conventional Møller–Plesset theory to the second order (MP2) and B2PLYP. Systematic test calculations are provided for covalently bonded molecules as well as compounds involving the intramolecular nonbonded interactions for the main group elements. Satisfactory performance of the xDH functionals demonstrates that the extra computer time on top of the conventional KS procedure is well‐invested, in particular, when the standard KS functionals and MP2 as well, are problematic. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some "difficult problems," such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals.  相似文献   

3.
4.
We report re-optimization of a recently proposed long-range corrected (LC) hybrid density functional [J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 084106] to include empirical atom-atom dispersion corrections. The resulting functional, omegaB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent systems, omegaB97X-D shows slight improvement over other empirical dispersion-corrected density functionals, while for covalent systems and kinetics it performs noticeably better. Relative to our previous functionals, such as omegaB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions.  相似文献   

5.
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.  相似文献   

6.
7.
We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C(9)H(8)O(4)) in the P2(1)/c monoclinic structure.  相似文献   

8.
An efficient and accurate analytic gradient method is presented for Hartree-Fock and density functional calculations using multiresolution analysis in multiwavelet bases. The derivative is efficiently computed as an inner product between compressed forms of the density and the differentiated nuclear potential through the Hellmann-Feynman theorem. A smoothed nuclear potential is directly differentiated, and the smoothing parameter required for a given accuracy is empirically determined from calculations on six homonuclear diatomic molecules. The derivatives of N2 molecule are shown using multiresolution calculation for various accuracies with comparison to correlation consistent Gaussian-type basis sets. The optimized geometries of several molecules are presented using Hartree-Fock and density functional theory. A highly precise Hartree-Fock optimization for the H2O molecule produced six digits for the geometric parameters.  相似文献   

9.
Hybrid functionals are responsible for much of the utility of modern Kohn-Sham density functional theory. When rigorously applied to solid-state metallic and small band gap systems, however, the slow decay of their nonlocal Hartree-Fock-type exchange makes hybrids computationally challenging and introduces unphysical effects. This can be remedied by using a range-separated hybrid which only keeps short-range nonlocal exchange, as in the functional of Heyd et al. [J. Chem. Phys. 118, 8207 (2003)]. On the other hand, many molecular properties require full long-range nonlocal exchange, which can also be included by means of a range-separated hybrid such as the recently introduced LC-omegaPBE functional [O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006)]. In this paper, we show that a three-range hybrid which mainly includes middle-range Hartree-Fock-type exchange and neglects long- and short-range Hartree-Fock-type exchange yields excellent accuracy for thermochemistry, barrier heights, and band gaps, emphasizing that the middle-range part of the 1/r potential seems crucial to accurately model these properties.  相似文献   

10.
The structure, dynamical, and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first-principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta-functional, four gradient-corrected functionals, and the local density and Hartree-Fock approximations. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self-diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and understructured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller average numbers of hydrogen bonds than pure density functionals but similar hydrogen bond populations. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than those of the corresponding pure density functionals.  相似文献   

11.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

12.
13.
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.  相似文献   

14.
Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.  相似文献   

15.
Semiconducting polymers with π-conjugated backbones show promise in fields such as photovoltaics. Practical applications of conjugated polymers require precise control over the polymer's electronic band structure. Several new classes of density functional approximation, including screened hybrids, semilocal Minnesota functionals, and Rung 3.5 functionals, show potential for improved predictions of conjugated polymer band structures. This work compares these methods to standard global hybrid density functionals for bandgaps and band structures of representative conjugated polymers. The new methods exhibit particular promise for modeling three-dimensionally periodic bulk polymers, which can be problematic for global hybrids.  相似文献   

16.
17.
The precision of binding energies and distances computed with dispersion-corrected density functional theory (DFT-D) is investigated by propagation of uncertainties, yielding relative uncertainties of several percent. Sensitivity analysis is used to calculate the geometry-dependent relative importance of each input parameter for the dispersion correction. While DFT-Ds are exact at asymptotically large distances, their damping functions are shown to play a significant role in binding geometries. This is demonstrated in detail for the interlayer binding of graphite. The techniques presented allow practitioners to quickly compute error bars and to get an a posteriori estimate about the transferability of their results. They can also aid the development of future dispersion corrections.  相似文献   

18.
The formulation and implementation of the spin-free (SF) exact two-component (X2c) theory at the one-electron level (SFX2c-1e) is extended in the present work to the analytic evaluation of second derivatives of the energy. In the X2c-1e scheme, the four-component one-electron Dirac Hamiltonian is block diagonalized in its matrix representation and the resulting "electrons-only" two-component Hamiltonian is then used together with untransformed two-electron interactions. The derivatives of the two-component Hamiltonian can thus be obtained by means of simple manipulations of the parent four-component Hamiltonian integrals and derivative integrals. The SF version of X2c-1e can furthermore exploit available nonrelativistic quantum-chemical codes in a straightforward manner. As a first application of analytic SFX2c-1e second derivatives, we report a systematic study of the equilibrium geometry and vibrational frequencies for the bent ground state of the copper hydroxide (CuOH) molecule. Scalar-relativistic, electron-correlation, and basis-set effects on these properties are carefully assessed.  相似文献   

19.
Errors for systems with noninteger occupation have been connected to common failures of density functionals. Previously, global hybrids and pure density functionals have been investigated for systems with noninteger charge and noninteger spin state. Local hybrids have not been investigated for either of those systems to the best of our knowledge. This study intends to close this gap. We investigate systems with noninteger charge to assess the many-electron self-interaction error and systems with noninteger spin state to assess the spin polarization error of recently proposed local hybrids and their range-separated variants. We find that long-range correction is very important to correct for many-electron self-interaction error in cations, whereas most full-range local hybrids seem to be sufficient for anions, where long-range-corrected density functionals tend to overcorrect. On the other hand, while all hitherto proposed long-range-corrected density functionals show large spin polarization errors, the Perdew-Staroverov-Tao-Scuseria (PSTS) functional performs best of all local hybrids in this case and shows an outstanding behavior for the dependence of the energy on the spin polarization.  相似文献   

20.
The difference between density functionals defined by energy criterion and density functionals defined by density criterion is studied for the exchange functional. It is shown that Slater potentials are exact exchange potentials in the sense that they yield the Hartree–Fock electron density if all operators are given by local expressions. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号