首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the activities of four ginsenosides Rc, Re, Rd, and Rf on splenic lymphocytes growth were studied by microcalorimetry. Some qualitative and quantitative information, such as the metabolic power–time curves, growth rate constant k, maximum heat-output power of the exponential phase P max and the corresponding appearance peak time t max, total heat output Q t, and promotion rate R p of splenic lymphocytes growth affected by the four ginsenosides were calculated. In accordance with thermo-kinetic model, the corresponding quantitative relationships of k, P max, t max, Q t, R p, and c were established, . Also, the median effective concentration (EC50) was obtained by quantitative analysis. Based on both the quantitative quantity–activity relationships (QQAR) and EC50, the sequence of promotion activity was Rc > Re > Rd > Rf. The analysis of structure–activity relationships showed that the number, type, and position of sugar moieties on the gonane steroid nucleus had important influences on the promotion activity of Rc, Re, Rd, and Rf on splenic lymphocytes growth. Microcalorimetry can be used as a useful tool for determining the activity and studying the quantity–activity relationship of drugs on cell.  相似文献   

2.
The recent intensification of industrially produced cellulose nanocrystals (CNCs) and cellulose nanofibrils has positioned nanocelluloses as promising materials for many water-based products and applications. However, for nanocelluloses to move beyond solely an academic interest, a thorough understanding of their interaction with water-soluble polymers is needed. In this work, we address a conflicting trend in literature that suggests polyethylene glycol (PEG) adsorbs to CNC surfaces by comparing the adsorption behaviour of PEG with CNCs versus fumed silica. While PEG is known to have strong hydrogen bonding tendencies and holds water tightly, it is sometimes (we believe erroneously) presumed that PEG binds to cellulose through hydrogen bonding in aqueous media. To test this assumption, the adsorption of PEG to CNCs and fumed silica (both in the form of particle films and in aqueous dispersions) was examined using quartz crystal microbalance with dissipation, isothermal titration calorimetry, rheology and dynamic light scattering. For all PEG molecular weights (300–10,000 g/mol) and concentrations (100–10,000 ppm) tested, strong rapid adsorption was found with fumed silica, whereas no adsorption to CNCs was observed. We conclude that unlike silanols, the hydroxyl groups on the surface of CNCs do not readily hydrogen bond with the ether oxygen in the PEG backbone. As such, this work along with previous papermaking literature supports the opinion that PEG does not adsorb to cellulose surfaces.  相似文献   

3.
4.
5.
We have demonstrated the fabrication of a colloidal crystalline array (synthetic opal) from monodispersed mesoporous silica spheres (MMSS) and the control of its optical response simply by changing the amount of benzene vapor adsorbed into the pores of MMSS. It was revealed that the refractive index of the colloidal crystal of MMSS showed an 11.7% increase by taking advantage of benzene adsorption, and thereby, the structural color changed reversibly. We also conducted the same measurement on silica spheres without mesopores and observed no change in the refractive index or the structural color. This optical response gives rise to the possibility of using MMSS colloidal crystals not only for controlling light reflection but also as sensing devices based on color change due to vapor adsorption. We have also incorporated an organic dye, the porphyrin derivative alpha,beta,chi,delta,-tetrakis(1-methylpyridinium-4-yl)porphyrin rho-toluenesulfonate (TMPyP), into the pores of MMSS. By adopting an electrophoretic deposition process in ethanol, periodic arrays fabricated from TMPyP-MMSS conjugates with absolute zeta-potentials near zero were obtained. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths due to an increase in the refractive index with increasing amounts of TMPyP adsorbed in the pores. The current work demonstrates the new possibility of creating colloidal crystals from MMSS with mesopores filled with various kinds of adsorbates to control the optical response effectively.  相似文献   

6.
7.
8.
Silica gel is widely used in commercial applications as a water adsorbent due to its properties including hydrothermally stable, high water sorption capacity, low regeneration temperature, low cost and wide range of pore diameters. Since the water sorption capacity of silica gel strongly depends on the pore size and structure, which can be controlled during synthesis, this paper study the effect of pore shapes and dimensions of silica gel upon the adsorption of a water molecule aiming at maximising the water sorption capacity. In particular, we consider three types of pore structures, namely cylindrical, square prismatic and conical pores. On using the Lennard-Jones potential and a continuum approximation, we find that the minimum radii for a water molecule to be accepted into cylindrical, square prismatic and conical pores are 4.009, 3.7898 and 4.4575 Å, respectively. For cylindrical and square prismatic pores, the critical radii which maximise the adsorption energy are 4.5189 and 4.1903 Å, respectively. Knowledge of these critical pore sizes may be useful for the manufacturing process of silica gel that will maximise the water sorption capacity.  相似文献   

9.
10.
Lysozyme adsorption at the silica/water interface has been studied using a new analytical technique called dual polarization interferometry. This laboratory-based technique allows the build up or removal of molecular layers adsorbing or reacting on a lightly doped silicon dioxide (silica) surface to be measured in terms of thickness and refractive index changes with time. Lysozyme adsorption was studied at a range of concentrations from 0.03 to 4.0 g dm(-3) and at both pH 4 and pH 7. Adsorbed layers ranging from 14 to 43 +/- 1 A in thickness and 0.21 to 2.36 +/- 0.05 mg m(-2) in mass coverage were observed at pH 4 with increasing lysozyme concentration, indicating a strong deformation of the monolayer over the low concentration range and the formation of an almost complete sideways-on bilayer toward the high concentration of 4 g dm(-3). At pH 7, the thickness of adsorbed layers varied from 16 to 54 +/- 1 A with significantly higher surface coverage (0.74 to 3.29 +/- 0.05 mg m(-2)), again indicating structural deformation during the initial monolayer formation, followed by a gradual transition to bilayer adsorption over the high concentration end. The pH recycling performed at a fixed lysozyme concentration of 1.0 g dm(-3) indicated a broadly reversible adsorption regardless of whether the pH was cycled from pH 7 to pH 4 and back again or vice versa. These observations are in good agreement with earlier studies undertaken using neutron reflection although the fine details of molecular orientations in the layers differ subtly.  相似文献   

11.
The hydrophobic-hydrophilic properties of a solid are related to the material chemistry and, often, these properties are relevant to the applications of a particular material. Contrarily to what happens with other properties, such as specific surface areas or pore volumes, the methodologies to ascertain on the hydrophilicity of a porous material are not well defined. In this work, we discuss and relate the information on the hydrophobicity degree obtained from water adsorption isotherms and from diffuse reflectance infrared Fourier transform (DRIFT), in a set of porous materials. The studied materials were mainly mesoporous solids, namely of MCM-41 and SBA-15 types, two xerogels and also different porous clays heterostructures. Both techniques were informative on the hydrophobic-hydrophilic properties of the studied samples, but the correlation between the information obtained by each technique was not straightforward. Water adsorption isotherms are much more sensitive to the differences of the studied materials than the DRIFT spectra. For silica-based mesoporous materials with similar surface chemistry, the water adsorption process and hence, the hydrophobic-hydrophilic properties, is mainly dependent on the pore diameters. However, water adsorption is much more sensitive to changes in the nature of the adsorbent surface than to changes in the pore diameter.  相似文献   

12.
Lipid bilayer formation via vesicle fusion on mesoporous silica and mesoporous titania was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescent recovery after photobleaching (FRAP). Results showed that lipid bilayers were formed on mesoporous silica and that intact vesicle adsorption was obtained on mesoporous titania. From the FRAP results, it could be concluded that the lipid bilayer was fluid; however, it had a smaller diffusivity constant compared to bilayers supported on a nonporous silica.  相似文献   

13.
The effect of a "guest-host" interaction on the phase composition and sorption properties of the composite sorbents "salt in a porous host matrix" has been studied. The matrix was a mesoporous silica of KSK type, while the confined salts were CaCl(2), CuSO(4), MgSO(4), and Na(2)SO(4). Both structure and properties of the composites were studied by X-ray diffraction, titration in the pH range of 2-9, differential dissolution, and TG techniques. Chemical interaction between the silica surface and the salt during preparation results in the formation of the salt surface complexes and stabilization of the dispersed salt in two phases, namely, a crystalline phase and an X-ray amorphous phase. The water sorption properties of the composites depend on the phase composition and can be intently modified by using variation of the preparation conditions.  相似文献   

14.
It is now known that the untreated discharge of pharmaceuticals into the environment can impact human health and development and lead to increased drug resistance in biota. Here, we present the first direct interface-specific studies that address the mobility of the widely used agricultural antibiotic morantel, which is commonly present in farm runoff. Surface-bound morantel was spectroscopically identified using second harmonic generation (SHG) via a two-photon resonance of its n-pi* transition and in the C-H stretching region by vibrational sum frequency generation (VSFG). Resonantly enhanced SHG adsorption isotherm measurements carried out at the silica/water interface between 6 x 10(-7) and 5 x 10(-5) M morantel concentration result in a free energy of adsorption of 42(2) kJ/mol at pH 7. Finally, real-time tracking of morantel interaction with the silica/water interface shows that the binding events are fully reversible, consistent with its high mobility in silica-rich soil environments. This work thus indicates that pharmaceuticals discharged into the environment can enter the groundwater supply of municipal water systems, at which point their removal is challenging. In addition, the high mobility of morantel in silica-rich soil environments could lead to developing increased interaction of this antibiotic with target organisms, which could respond by increased drug resistance.  相似文献   

15.
The effect of adding a small amount of dodecyl dimethylamine oxide (DDAO) on adsorption on silica from an aqueous solution of dodecyl maltoside (C12G2) has been investigated. The C12G2 itself does not adsorb significantly on silica at any concentration. DDAO on the other hand readily adsorbs in a bilayer-like structure at concentrations approaching the critical micelle concentration (cmc), but the adsorbed amount at the concentrations it has been applied in these mixtures is small. In contrast, by combination of the two surfactants, significant adsorption is observed at concentrations where the adsorption of the pure DDAO, as well as pure C12G2, is very low. We thus see a strong enhancement of the adsorption from the mixed system. The adsorption is suggested to be a two-step process, where individual DDAO molecules first adsorb to the silica surface through electrostatic interactions, and then C12G2 adsorbs at the hydrophobic sites the DDAO tails constitute through hydrophobic bonding. A minimum concentration of DDAO is required to induce adsorption from a solution with constant C12G2 concentration. This concentration is lower for C12G2 solutions below and equal to cmcC12G2 than above cmcC12G2. In addition, the total adsorbed amount shows a maximum around cmcC12G2 of the mixture for a solution with low DDAO contents. Both these effects are explained by incorporation of DDAO in the mixed micelles above cmc(mix), which leads to a desorption of DDAO from the surface.  相似文献   

16.
Study of hexane adsorption in nanoporous MCM-41 silica   总被引:2,自引:0,他引:2  
We study here the adsorption of hexane on nanoporous MCM-41 silica at 303,313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.  相似文献   

17.
The main factors that determine negative adsorption of polymers have been considered. These are the preferred (positive) adsorption of the solvent molecules and the sieve effect during the interaction of macromolecules with a porous adsorbent. Modification of the silica surface, solvent polarity, and the size of the macromoleculer coils of polystyrene favor the negative sorption of polystyrene by porous silica and size-exclusion chromatography separation of macromolecules. The relations between the partition coefficient of a substance between the bulk and the adsorption phases and the excess values of retention, the capacity factor, and the adsorption coefficient (the Henry constant) are analyzed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2204–2208, September, 1996.  相似文献   

18.
The dispersity, specific surface area, porosity, and pore size distribution are determined for samples of colloidal silica and calcium o-phosphate, toothpaste constituents. The results obtained show that adsorbents have the developed mesoporous structure. It was found that the adsorption of sodium lauryl sulfate and a nonionic surfactant, glyceryl monocaprylate, at the aqueous surfactant solution-colloidal silica interface is small and has the unusual character. The reasons for a low adsorption of surfactants and their mixtures on the surface of the studied adsorbents are discussed.  相似文献   

19.
Heparin was modified with adipic dihydrazide and covalently linked to surface-activated silica wafers. X-ray photoelectron spectroscopy was used at each stage of derivatization and showed that successful immobilization had taken place. Surfaces were imaged with atomic force microscopy to determine the uniformity of the heparin layer as well as its thickness. In situ ellipsometry was used to estimate layer thickness as well, and to study protein concentration and adsorption time effects on the adsorption and elution kinetics exhibited by human plasma fibrinogen. The adsorbed amount of fibrinogen increased with time and concentration on each type of surface. Under all experimental conditions, fibrinogen adsorbed at a lower rate and to a lower extent on heparinized as compared to unheparinized silica. In addition, buffer elution experiments showed that fibrinogen was less tightly bound to heparinized silica. In order to examine behavior relative to fibrinogen mobility at these interfaces, the sequential adsorption of fibrinogen was recorded. The difference in adsorption rates between the first and second adsorption cycles, evaluated at identical mass density, indicated that post-adsorptive molecular rearrangements had taken place. In general, higher solution concentration and longer adsorption time in the first adsorption step led to more rearrangement, and these history dependent effects were more pronounced on the heparinized silica. These rearrangements are suggested to involve clustering of adsorbed fibrinogen, in this way increasing the amount of unoccupied area at the interface. These rearrangements were presumably facilitated on the heparinized silica by enhanced lateral mobility of fibrinogen at this negatively charged, highly hydrophilic interface.  相似文献   

20.
A 1-l water sample was concentrated to 20ml by freezing and analyzed for soluble, colloidal and insoluble silica by the spectrophotometric heteropoly blue method and by inductively coupled plasma/atomic emission spectrometry. High-purity water obtained from a vitreous-silica sub-boiling distillation still contained a few micrograms of insoluble silica per liter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号