首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and attempted isolation of neutral bis(allyl)strontium [Sr(C(3)H(5))(2)] (1) resulted in the isolation of potassium tris(allyl)strontiate K[Sr(C(3)H(5))(3)] (2). In situ generated 1 shows a pronounced Br?nsted basicity, inducing polymerisation of THF. Ate complex 2 crystallises as [K(THF)(2){Sr(C(3)H(5))(3)}(THF)](∞) (2·(THF)(3)). The salt-like solid state structure of 2·(THF)(3) comprises a two-dimensional network of (μ(2)-η(3):η(3)-C(3)H(5))(-) bridged potassium and strontium centres. Synthesis of allyl complexes 1 and 2 utilised SrI(2), [Sr(TMDS)(2)] (3) (TMDS = tetramethyldisilazanide), and [Sr(HMDS)(2)] (HMDS = hexamethyldisilazanide) as strontium precursors. The solid state structure of previously reported [Sr(TMDS)(2)] (3) was established by X-ray single crystal analysis as a dissymmetric dimer of [Sr(2)(TMDS)(4)(THF)(3)] (3·(THF)(3)) with multiple Si-HSr agostic interactions. The presence of ether ligands (THF, 18-crown-6) influenced the Si-HSr resonances in the NMR spectra of the amido complex 3.  相似文献   

2.
In light of the important recent synthesis of a stable tetrasilacyclobutadiene dianion compound by Sekiguchi and co-workers and the absence of theoretical studies, ab initio methods have been used to investigate this dianion and a number of related species. These theoretical methods predict multiple minima for each compound, and most minima contain folded and bicyclic silicon rings. For (Si(4)H(4))(2-), (Si(4)H(4))(2-)·2Li(+), [Si(4)(SiH(3))(4)](2-)·2Li(+), [Si(4)(SiH(3))(4)](2-)·2Na(+), and [Si(4)(SiH(3))(4)](2-)·2K(+), respectively, the energetically lowest-lying structures are designated A-3 (C(2v) symmetry), B-8 (C(1) symmetry), C-1 (C(2) symmetry), D-1 (C(2) symmetry), and E-1 (C(2h) symmetry). None of these structures satisfies both the ring planarity and the cyclic bond equalization criteria of aromaticity. However, all of the representative NICS values of these lowest-lying structures are negative, indicating some aromatic character. Especially, structures C-1 and D-1 of C(2) symmetry effectively satisfy the criteria of aromaticity due to the slightly trapezoidal silicon rings, which are nearly planar with nearly equal bond lengths. SiH(3) substitution for hydrogen in (Si(4)H(4))(2-)·2Li(+) significantly reduces the degree of aromaticity, as reflected in the substantially smaller NICS absolute values for [Si(4)(SiH(3))(4)](2-)·2Li(+) than those of (Si(4)H(4))(2-) and (Si(4)H(4))(2-)·2Li(+). The aromaticity is further weakened in [Si(4)(SiH(3))(4)](2-)·2Na(+) and [Si(4)(SiH(3))(4)](2-)·2K(+) by replacing lithium with the sodium and potassium cations.  相似文献   

3.
Addition of 1 equiv of potassium metal to a tetrahydrofuran (THF) solution of Zn(2)(4,4'-bipyridine)(mes)(4) (1; mes =2,4,6-Me(3)C(6)H(2)) in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) yielded the radical anionic species [Zn(2)(4,4'-bipyridine)(mes)(4)](?-), which was characterized by single crystal X-ray diffraction in [K(18-crown-6)(THF)(2)][Zn(2)(4,4'-bipyridine)(mes)(4)] (2). A similar reaction employing 2 equiv of alkali metal afforded the related complex [K(18-crown-6)](2)[Zn(2)(4,4'-bipyridine)(mes)(4)] (3). The [Zn(2)(4,4'-bipyridine)(mes)(4)](n-) (n = 0-2) moieties present in 1-3 are largely isostructural, yet exhibit significant structural variations which arise because of differences in their electronic structure. These species represent a homologous series of complexes in which the ligand exists in three distinct oxidation states. Structural data, spectroscopic measurements, and density functional theory (DFT) calculations are consistent with the assignment of 1, 2, and 3 as complexes of the neutral, radical anionic, and dianionic 4,4'-bipyridyl ligand, respectively. To the best of our knowledge, species 2 and 3 are the first crystallographically characterized transition metal complexes of the 4,4'-bipyridyl radical and dianion.  相似文献   

4.
New syntheses of complexes containing the recently discovered (N(2))(3-) radical trianion have been developed by examining variations on the LnA(3)/M reductive system that delivers "LnA(2)" reactivity when Ln = scandium, yttrium, or a lanthanide, M = an alkali metal, and A = N(SiMe(3))(2) and C(5)R(5). The first examples of LnA(3)/M reduction of dinitrogen with aryloxide ligands (A = OC(6)R(5)) are reported: the combination of Dy(OAr)(3) (OAr = OC(6)H(3)(t)Bu(2)-2,6) with KC(8) under dinitrogen was found to produce both (N(2))(2-) and (N(2))(3-) products, [(ArO)(2)Dy(THF)(2)](2)(μ-η(2):η(2)-N(2)), 1, and [(ArO)(2)Dy(THF)](2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 2a, respectively. The range of metals that form (N(2))(3-) complexes with [N(SiMe(3))(2)](-) ancillary ligands has been expanded from Y to Lu, Er, and La. Ln[N(SiMe(3))(2)](3)/M reactions with M = Na as well as KC(8) are reported. Reduction of the isolated (N(2))(2-) complex {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2)), 3, with KC(8) forms the (N(2))(3-) complex, {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)], 4a, in high yield. The reverse transformation, the conversion of 4a to 3 can be accomplished cleanly with elemental Hg. The crown ether derivative {[(Me(3)Si)(2)N](2)Y(THF)}(2)(μ-η(2):η(2)-N(2))[K(18-crown-6)(THF)(2)] was isolated from reduction of 3 with KC(8) in the presence of 18-crown-6 and found to be much less soluble in tetrahydrofuran (THF) than the [K(THF)(6)](+) salt, which facilitates its separation from 3. Evidence for ligand metalation in the Y[N(SiMe(3))(2)](3)/KC(8) reaction was obtained through the crystal structure of the metallacyclic complex {[(Me(3)Si)(2)N](2)Y[CH(2)Si(Me(2))NSiMe(3)]}[K(18-crown-6)(THF)(toluene)]. Density functional theory previously used only with reduced dinitrogen complexes of closed shell Sc(3+) and Y(3+) was extended to Lu(3+) as well as to open shell 4f(9) Dy(3+) complexes to allow the first comparison of bonding between these four metals.  相似文献   

5.
The salts [18-crown-6-K](4)[Sn(4)Se(10)].5en and [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF were isolated upon addition of THF to the ethylenediamine (en) extracts of the alloys KSn(0.90)Se(1.93) and K(4)Sn(4)Te(10) that had been extracted in the presence of 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane). The Sn(4)Te(10)(4-) anion has been structurally characterized for the first time by a single-crystal X-ray diffraction study of [18-crown-6-K](4)[Sn(4)Te(10)].3en.2THF: P2(1)/n, a = 22.420(5) A, b = 19.570(4) A, c = 24.680(5) A, beta = 96.90(3)(o), Z = 4, and R(1) = 0.0468 at -183 degrees C. In addition to Si(4)Te(10)(4-) and Ge(4)Te(10)(4-), the Sn(4)Te(10)(4-) anion represents the only other known group 14 adamantanoid telluride. The X-ray crystal structure determination of the related [18-crown-6-K](4)[Sn(4)Se(10)].5en salt has also been determined: P2(1)/n, a = 22.003(2) A, b = 18.966(2) A, c = 24.393(2) A, beta = 97.548(8)(o), Z = 4, and R(1) = 0.0843 at -123 degrees C. The anion geometries are of the adamantanoid type where the Sn(IV) atoms occupy the bridgehead positions and the chalcogen atoms occupy the bridging and terminal sites. The energy minimized geometries of Sn(4)Ch(10)(4-) have also been determined using density functional theory (DFT). Mayer bond order analyses, Mayer valencies, and empirical bond valencies indicate that the terminal Sn-Ch bonds have significant multiple bond character, with the terminal Sn-Se bond having more multiple bond character than the terminal Sn-Te bond. The vibrational frequencies of the Sn(4)Se(10)(4-) and Sn(4)Te(10)(4-) anions have been calculated using DFT methods, allowing the Raman spectrum of Sn(4)Se(10)(4-) to be fully assigned.  相似文献   

6.
[1,2,5]Thiadiazolo[3,4-c][1,2,5]thiadiazole (1) is synthesized in 62% yield by fluoride ion-induced condensation of 3,4-difluoro-1,2,5-thiadiazole with (Me(3)SiN=)(2)S. The reversible electrochemical reduction of 1 leads to the long-lived [1,2,5]thiadiazolo[3,4-c][1,2,5]thiadiazolidyl radical anion (2) and further to the dianion (3). The radical anion 2 is also obtained by the chemical reduction of the precursor 1 with t-BuOK in MeCN. The radical anion 2 is characterized by ESR spectroscopy in solution and in the crystalline state. The stable salts [K(18-crown-6)][2] and [K(18-crown-6)][2].MeCN (8 and 9, respectively) are isolated from the spontaneous decomposition of the [K(18-crown-6)][PhXNSN] (6, X = S; 7, X = Se) salts in MeCN solution followed by XRD characterization. The radical anion 2 acts as a bridging ligand in 8 and as chelating ligand in 9. The structural changes observed by XRD in going from 1 to 2 are explained by means of DFT/(U)B3LYP/6-311+G calculations.  相似文献   

7.
A series of micro2-fluoro-bridged heteronuclear bidentate Lewis acid complexes [K(18-crown-6)THF]+ [Fc(BMeF)(SnMe2Cl)F]- (1-2F), [K(18-crown-6)THF]+ [Fc(BMeF)(SnMe2F)F]- (1-3F), [K(18-crown-6)THF]+ [Fc(BMePh)(SnMe2Cl)F]- (2-F), and [K(18-crown-6)THF]+ [Fc(BMePh)(SnMe2F)F]- (2-2F) (Fc=1,2-ferrocenediyl) was prepared. Compounds 2-F and 2-2F were obtained as a mixture of diastereomers, which arise due to the generation of a stereocenter at boron in addition to their inherent planar chirality. All compounds have been studied in the solid state by single-crystal X-ray diffraction analysis and by multinuclear NMR spectroscopy in solution. As a result of bridging-fluoride interactions, tetrahedral boron and distorted trigonal-bipyramidal tin centers are observed. Comparison with the corresponding monofunctional ferrocenylborates further supports the bridging nature of the fluoride anion. Two-dimensional exchange spectroscopy 19F NMR studies provide evidence for facile intermolecular and intramolecular fluorine exchange processes. All complexes display reversible one-electron oxidation events at lower potentials than those of the tricoordinate ferrocenylborane precursors, which is typical of ferrocenylborate complexes.  相似文献   

8.
Treatment of [Ln(BH 4) 3(THF) 3] (Ln = Ce, Nd) with 3 and 4 mol equiv of KSBT in tetrahydrofuran (THF) led to the formation of [Ln(SBT) 3(THF)] and [K(THF)Ln(SBT) 4], respectively. The uranium(IV) compound [U(SBT) 4(THF) 2] was obtained from U(BH 4) 4 and was reversibly reduced by sodium amalgam into the corresponding anionic uranium(III) complex. The crystal structures of [Ln(SBT) 3(THF) 2] (Ln = Ce, Nd), [K(15-crown-5) 2][Nd(SBT) 4], [U(SBT) 4(THF)], and [K(15-crown-5) 2][U(SBT) 4(py)] show the bidentate coordination mode and the thionate character of the SBT ligand.  相似文献   

9.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

10.
Bowl-shaped mono- and dianions are prepared by reduction of corannulene (C(20)H(10), 1) with sodium and potassium metals in the presence of [18]crown-6 ether. Single-crystal X-ray diffraction studies of two sodium salts, [Na(THF)(2)([18]crown-6)](+)[1(-)] (2a) and [Na([18]crown-6)](+)[1(-)] (2b), reveal the presence of naked corannulene monoanions 1(-) in both cases. In contrast, the potassium adduct, [K([18]crown-6)](+)[1(-)] (3), shows an η(2)-binding of the K(+) ion to the convex face of 1(-). For the first time, corannulene dianions have been isolated as salts with sodium, [Na(2)([18]crown-6)](2+)[1(2-)] (4a) and [Na(THF)(2)([18]crown-6)](+)[Na([18]crown-6)](+)[1(2-)] (4b), and potassium counterions, [K([18]crown-6)](2)(+)[1(2-)] (5). Their structural characterization reveals geometry perturbations upon addition of two electrons to a bowl-shaped polyarene. It also demonstrates η(5)- or η(6)-binding of metals to the curved carbon surface of 1(2-), depending on the crystallization conditions. Both mono- and doubly-charged corannulene bowls show the preferential exo binding of Na(+) and K(+) ions in all investigated compounds. Various types of C-H···π interactions are found in the crystals of 2-5. The UV/Vis, ESR, and (1)H NMR spectroscopic studies of 2-5 indicate different coordination environment of corannulene anions in solution, depending on the metal ion.  相似文献   

11.
The synthesis and structures of lanthanide complexes supported by benzoxazine-functionalized amine bridged bis(phenolate) ligand 6,6'-(2-(8-tert-butyl-6-methyl-2H-benzo[e][1,3]oxazin-3(4H)-yl)ethylazanediyl)bis(methylene)bis(2-tert-butyl-4-methylphenolato) (L(2-)) are described. Salt metathesis reaction between lanthanide trichloride and 2 eq of LNa(2) in THF at room temperature afforded the corresponding "ate" complexes [L(2)LnNa(THF)(2)] (Ln[double bond, length as m-dash]Y (1), Nd (2), Er (3), Yb (4)). Further treatment of the product with 18-crown-6 afforded discrete ion-pair complexes [L(2)Ln][(18-crown-6)Na(THF)(2)] (Ln[double bond, length as m-dash]Y (5), Yb (6)). The single-crystal structural analyses of 1 and 3-6 revealed that the lanthanide cation and the sodium cation were bridged by two phenolate oxygen atoms in complexes 1, 3 and 4, while in complexes 5 and 6, the anion comprises a lanthanide cation coordinated by two L(2-) and the cation is comprised of a sodium cation surrounded by an 18-crown-6 and two THF molecules. These complexes were found to exhibit distinct activities towards the ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

12.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

13.
A differential pulse voltammetric study of complexes of Cd(II) and Pb(II) with crown ethers is reported. Measured log K(1) values for Cd(II) with 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane), 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane), and 12-crown-4 (1,4,7,10-tetraoxacyclododecane) are respectively 2.53 (+/-0.06), 1.97 (+/-0.07), and 1.72 (+/-0.08) and for Pb(II) with 18-crown-6 is 4.17 (+/-0.03), all at 25 degrees C in 0.1 M LiNO(3). Cd(II) is smaller than is usually associated with strong bonding with crown ethers. The high log K(1) values for Cd(2+) with crown ethers found here are discussed in terms of distortion of Cd(II) by relativistic effects. The resulting plasticity of the coordination geometry of the Cd(II) ion allows it to meet the metal ion size requirements of all the crown ethers, allowing high log K(1) values to occur. Crystal structures for [Cd(bz-18-crown-6)(SCN)(2)] (1) (bz-18-crown-6 = benzo-1,4,7,10,13,16-hexaoxacyclooctadecane) and [K(18-crown-6)][Cd(SCN)(3)] (2) are reported. 1 was triclinic, space group P1, a = 8.5413(2), b = 10.0389(2), and c = 13.4644(2) A, alpha = 94.424(1), beta = 102.286(1), and gamma = 93.236(1) degrees, Z = 2, and final R = 0.023. 2 was orthorhombic, space group Cmc2(1), a = 14.7309(3), b = 15.1647(3), and c = 10.6154(2) A, Z = 4, and final R = 0.020. In 1, the Cd occupies the cavity of the bz-18-crown-6 with long average Cd-O bond lengths of 2.65 A and is N-bonded to the thiocyanates with short average Cd-N bonds of 2.12 A. In [Cd(bz-18-crown-6)(SCN)(2)], the linear coordination involving the Cd and the two N-bonded thiocyanate groups in 1 is discussed in terms of the role of relativistic effects in the tendency to linear coordination geometry in group 12 metal ions. In 2 Cd forms a polymeric structure involving thiocyanate bridges between Cd atoms and K(+) occupies the cavity of the crown ether. 2 highlights the fact that cadmium is almost never S-bonded to thiocyanate except in bridging thiocyanates.  相似文献   

14.
The ligand substitution reaction of Ru(2)(O(2)CCH(3))(4)Cl with 5-substituted N-(2-pyridyl)-2-oxy-5-R-benzylaminate (R = H, Me, Cl, Br, NO(2)) resulted in a family of anionic diruthenium species of [Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) that were isolated by using Na(+)- or K(+)-18-crown-6-ether as the countercation: [A(18-crown-6)(S)(x)()][Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)] (A = Na(+), K(+); S = solvent; R = H, 1; Me, 2; Cl, 3; Br, 4; NO(2), 5). All compounds were structurally characterized by X-ray crystallography. The structural features of the anionic parts are very similar among the compounds: two acetate and two R-salpy(2)(-) ligands are, respectively, located around the Ru(2) unit in a trans fashion, where the R-salpy(2)(-) ligand acts as a tridentate ligand having both bridging and chelating characters to form the M-M bridging/axial-chelating mode. Compounds 1 and 5 with K(+)-18-crown-6-ether have one-dimensional chain structures, the K(+)-18-crown-6-ether interacting with phenolate oxygens of the [Ru(2)(O(2)CCH(3))(2)(R-salpy)(2)](-) unit to form a repeating unit, [.K.O-Ru-Ru-O.], whereas 2-4 are discrete. Cyclic voltammetry and differential pulse voltammetry revealed systematic redox activities based on the dimetal center and the substituted ligand, obeying the Hammett law with the reaction constants per substituent, rho, for the redox processes being 127 mV for Ru(2)(5+)/Ru(2)(4+), 185 mV for Ru(2)(6+)/Ru(2)(5+), 92 mV for Ru(2)(7+)/Ru(2)(6+), and 179 mV for R-salpy(-)/R-salpy(2)(-). For 3, the singly oxidized and reduced species, Ru(2)(6+) and Ru(2)(4+), respectively, generated by bulk controlled-potential electrolyses were finally monitored by spectroscopy. The singly oxidized species can also be slowly generated by air oxidation.  相似文献   

15.
合成了苯并18-冠-6(B18C6)与M2[Pt(SCN)6](M=Na,K)的配合物:{[Na (B18C6)]6[Pt(SCN)6]}[Pt(SCN)6](SCN)2(1),[K(B18C6)]2[Pt(SCN)6]·4H2O(2). 通过元素分析、红外光谱、单晶X射线衍射进行了表征.1为单斜晶系、空间群R3^-, a=b=1.9933(3)nm,c=2.9760(6)nm,α=β=90°,γ=120°,V=10.240(3)nm^3,Z=3, Dcalcd=1.564g/cm^3,F(000)=4908,R1=0.0535,wR2=0.1030.2为三斜晶纱、空间群 P1^-,a=1.1692(3)nm,b=1.1853(4)nm,c=1.2381(5)nm,α=61.419(5)°,β=80.757 (8)°,γ=89.003(5)°,V=1.4836(9)nm^3,Z=1,Dcalcd=1.476g/cm^3,F(000)=666, R1=0.0696,wR2=0.1346.1由{[Na(B18C6)]6[Pt(SCN)6]}^4+配阳离子、[Pt(SCN)6] ^2-配阴离子和SCN^-阴离子组成。相邻{[Na(B18C6)]6[Pt(SCN)6]}^4+通过Na-O键 形成三维网状结构。[Pt(SCN)6]^2-和SCN^-仅起平衡电荷的作用.2由两个[K (B18C6)]^+配阳离子和一个[Pt(SCN)6]^2-配阴离子组成。相邻[K(B18C6)]2[Pt (SCN)6]离子对通过K-O键形成一维链状结构。  相似文献   

16.
Potassium-mirror reduction of tetracyanoethylene (TCNE) acceptor in tetrahydrofuran affords K(THF)2 TCNE salt (1) showing double TCNE/K chains assembled via unusual μ3-TCNE-bridging of potassium cations. These parallel ladder-type chains are further tethered by pairs of THF bridges between potassium centers and by intermolecular π-bonding in (TCNE)22? dimers, and this results in formation of quasi-2-D coordination networks. In the presence of crown-ether ligand, the same potassium-mirror reduction lead to formation of [K(18-crown-6)(THF)2]TCNE salt (2) in which monomeric tetracyanoethylene anion-radicals are positioned between bulky [K+(18-crown-6)(THF)2] counter-ions. In comparison, crystallization of tetracyanoethylene anion-radicals with K+(18-crown-6) counter-ions in dichloromethane affords K(18-crown-6)TCNE salt (3) consisting of 1-D chains with 1,2-(N,N’)-TCNE bindings of potassium cations (nested in the crown-ether cavities). Temperature-dependent magnetic susceptibility study revealed essentially isolated tetracyanoethylene anion-radicals (S = 1/2) in this 1-D coordination polymer.  相似文献   

17.
Optically pure anionic complexes of pyridinecarboxamide ligands, N(2),N(6)-bis((R)-α-methylbenzyl)pyridine-2, 6-dicarboxamide H(2)(R,R-L(1)) and N(2),N(6)-bis((S)-1-methoxypropan-2-yl)pyridine-2, 6-dicarboxamide H(2)(S,S-L(2)) have been synthesised and fully characterised. The complexes: (18-crown-6)K[Co(III)(R,R-L(1))(2)], (18-crown-6)K[Fe(III)(R,R-L(1))(2)] and K[Co(III)(S,S-L(2))(2)]·3H(2)O show interesting extended structures from 0D discrete units through 1D zigzag chains to 2D honeycomb layers. The complex anions were used in the synthesis of radical cation salts with tetrathiafulvalene (TTF). The salts (TTF)[Co(III)(R,R-L(1))(2)] and (TTF)[Co(III)(S,S-L(2))(2)]·EtOAc were characterised by single crystal X-ray diffraction and conductivity measurements. Both compounds comprise mono-oxidised TTF molecules and exhibit similar layered structures with no direct TTF stacking but in which phenyl substituents from the complex anion or co-crystallised ethyl acetate alternate with TTF(+) units. Solution spectroscopic and cyclic voltammetric evidence points to the formation of soluble assemblies between TTF(+) and the counterion which correspond to the stoichiometry observed by crystallography and other methods in the solid state.  相似文献   

18.
The compounds [K(Q)][IrH(4)(PR(3))(2)] (Q = 18-crown-6, R = Ph, (i)Pr, Cy; Q = aza-18-crown-6, R = (i)Pr; Q = 1,10-diaza-18-crown-6, R = Ph, (i)Pr, Cy; Q = cryptand-222, R = (i)Pr, Cy) were formed in the reactions of IrH(5)(PR(3))(2) with KH and Q. In solution, the stereochemistry of the salts of [IrH(4)(PR(3))(2)](-) is surprisingly sensitive to the countercation: either trans as the potassium cryptand-222 salts (R = Cy, (i)Pr) or exclusively cis (R = Cy, Ph) as the crown- and azacrown-potassium salts or a mixture of cis and trans (R = (i)Pr). There is IR evidence for protonic-hydridic bonding between the NH of the aza salts and the iridium hydride in solution. In single crystals of [K(18-crown-6)][cis-IrH(4)(PR(3))(2)] (R = Ph, (i)Pr) and [K(aza-18-crown-6)][cis-IrH(4)(P(i)Pr(3))(2)], the potassium bonds to three hydrides on a face of the iridium octahedron according to X-ray diffraction studies. Significantly, [K(1,10-diaza-18-crown-6)][trans-IrH(4)(P(i)Pr(3))(2)] crystallizes in a chain structure held together by protonic-hydridic bonds. In [K(1,10-diaza-18-crown-6)][cis-IrH(4)(PPh(3))(2)], the potassium bonds to two hydrides so that one NH can form an intra-ion-pair protonic-hydridic hydrogen bond while the other forms an inter-ion-pair NH.HIr hydrogen bond to form chains through the lattice. Thus, there is a competition between the potassium and NH groups in forming bonds with the hydrides on iridium. The more basic P(i)R(3) complex has the lower N-H stretch in the IR spectrum because of stronger N[bond]H...HIr hydrogen bonding. The trans complexes have very low Ir-H wavenumbers (1670-1680) due to the trans hydride ligands. The [K(cryptand)](+) salt of [trans-IrH(4)(P(i)Pr(3))(2)](-) reacts with WH(6)(PMe(2)Ph)(3) (pK(alpha)(THF) 42) to give an equilibrium (K(eq) = 1.6) with IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-) while the same reaction of WH(6)(PMe(2)Ph)(3) with the [K(18-crown-6)](+) salt of [cis-IrH(4)(P(i)Pr(3))(2)](-) has a much larger equilibrium constant (K(eq) = 150) to give IrH(5)(P(i)Pr(3))(2) and [WH(5)(PMe(2)Ph)(3)](-); therefore, the tetrahydride anion displays an unprecedented increase (about 100-fold) in basicity with a change from [K(crypt)](+) to [K(crown)](+) countercation and a change from trans to cis stereochemistry. The acidity of the pentahydrides decrease in THF as IrH(5)(P(i)Pr(3))(2)/[K(crypt)][trans-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 42) > IrH(5)(PCy(3))(2)/[K(crypt)][trans-IrH(4)(PCy(3))(2)] (pK(alpha)(THF) = 43) > IrH(5)(P(i)Pr(3))(2)/[K(crown)][cis-IrH(4)(P(i)Pr(3))(2)] (pK(alpha)(THF) = 44) > IrH(5)(PCy(3))(2)/[K(crown)][cis-IrH(4)(PCy(3))(2)]. The loss of PCy(3) from IrH(5)(PCy(3))(2) can result in mixed ligand complexes and H/D exchange with deuterated solvents. Reductive cleavage of P-Ph bonds is observed in some preparations of the PPh(3) complexes.  相似文献   

19.
Treatment of Ba[N(SiMe3)2]2(THF)2 with 2 equiv of dimethylaminotetrazole or diisopropylaminotetrazole and 1 equiv of 18-crown-6 afforded Ba[CN4(NMe2)]2(18-crown-6) (87%) and Ba[CN4(NiPr2)]2(18-crown-6) (79%) as colorless crystalline solids. Ba[CN4(NMe2)]2(18-crown-6) contains two 1,2-eta2-tetrazolato ligands and one eta6-18-crown-6 ligand. The molecular structure of Ba[CN4(NiPr2)]2(18-crown-6) is similar to that of Ba[CN4(NMe2)]2(18-crown-6), except that the tetrazolato ligands exhibit the isomeric 2,3-eta2-coordination mode and the tetrazolato ligand CN4 cores are bent significantly toward the 18-crown-6 ligands. Molecular orbital calculations were carried out on the model complexes Ba(azolate)2(18-crown-6) (azolate = 1,2-eta2-CHN4, 2,3-eta2-CHN4, and eta2-N5) and demonstrate that the ligand coordination modes are influenced by intramolecular interactions between filled nitrogen orbitals on the azolato ligands and empty C-H sigma* orbitals on the 18-crown-6 ligands.  相似文献   

20.
By means of cyclic voltammetry (CV) and DFT calculations, it was found that the electron-acceptor ability of 2,1,3-benzochalcogenadiazoles 1 – 3 (chalcogen: S, Se, and Te, respectively) increases with increasing atomic number of the chalcogen. This trend is nontrivial, since it contradicts the electronegativity and atomic electron affinity of the chalcogens. In contrast to radical anions (RAs) [ 1 ].− and [ 2 ].−, RA [ 3 ].− was not detected by EPR spectroscopy under CV conditions. Chemical reduction of 1 – 3 was performed and new thermally stable RA salts [K(THF)]+[ 2 ].− ( 8 ) and [K(18-crown-6)]+[ 2 ].− ( 9 ) were isolated in addition to known salt [K(THF)]+[ 1 ].− ( 7 ). On contact with air, RAs [ 1 ].− and [ 2 ].− underwent fast decomposition in solution with the formation of anions [ECN], which were isolated in the form of salts [K(18-crown-6)]+[ECN] ( 10 , E=S; 11 , E=Se). In the case of 3 , RA [ 3 ].− was detected by EPR spectroscopy as the first representative of tellurium–nitrogen π-heterocyclic RAs but not isolated. Instead, salt [K(18-crown-6)]+2[ 3 -Te2]2− ( 12 ) featuring a new anionic complex with coordinate Te−Te bond was obtained. On contact with air, salt 12 transformed into salt [K(18-crown-6)]+2[ 3 -Te4- 3 ]2− ( 13 ) containing an anionic complex with two coordinate Te−Te bonds. The structures of 8 – 13 were confirmed by XRD, and the nature of the Te−Te coordinate bond in [ 3 -Te2]2− and [ 3 -Te4- 3 ]2− was studied by DFT calculations and QTAIM analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号