首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We report herein the template-directed synthesis, characterization, and electric properties of single-walled carbon nanotube- (SWNT-) based coaxial nanowires, that is, core (SWNT)-shell (conducting polypyrrole and polyaniline) nanowires. The SWNTs were first dispersed in aqueous solutions containing cationic surfactant cetyltrimethylammonium bromide (CTAB) or nonionic surfactant poly(ethylene glycol) mono-p-nonyl phenyl ether (O pi-10). Each individual nanotube (or small bundle) was then encased in its own micellelike envelope with hydrophobic surfactant groups orientated toward the nanotube and hydrophilic groups orientated toward the solution. And thus a hydrophobic region within the micelle/SWNT (called a micelle/SWNT hybrid template) was formed. Insertion and growth of pyrrole or aniline monomers in this hybrid template, upon removal of the surfactant, produce coaxial structures with a SWNT center and conducting polypyrrole or polyaniline coating. Raman and Fourier transform infrared (FTIR) spectroscopy and scanning (SEM) and transmission (TEM) electron microscopy were used to characterize the composition and the structures of these coaxial nanowires. The results revealed that the micellar molecules used could affect the surface morphologies of the resulting coaxial nanowires but not the molecular structures of the corresponding conducting polymers. Electric properties testing indicated that the SWNTs played the key roles in the conducting polymer/SWNT composites during electron transfer in the temperature range 77 K to room temperature. Compared with the SWNT network embedded in the conducting polymers, the composites within which SWNTs were coated perfectly by the identical conducting polymers exhibited higher barrier heights during electron transfer.  相似文献   

2.
We compare popular analytical techniques, including scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA), and Raman and near-infrared (NIR) spectroscopy, for the evaluation of the purity of bulk quantities of single-walled carbon nanotubes (SWNTs). Despite their importance as imaging techniques, SEM and TEM are not capable of quantitatively evaluating the purity of typical inhomogeneous bulk SWNT samples because the image frame visualizes less than 1 pg of SWNT material; furthermore, there is no published algorithm to convert such images into numerical data. The TGA technique is capable of measuring the amount of metal catalyst in an SWNT sample, but does not provide an unambiguous separation between the content of SWNTs and carbonaceous impurities. We discuss the utilization of solution-phase near-infrared spectroscopy and solution-phase Raman spectroscopy to quantitatively compare arbitrary samples of bulk SWNT materials of different purities. The primary goal of this paper is to provide the chemical community with a realistic evaluation of current analytical tools for the purity evaluation of a bulk sample of SWNTs. The secondary goal is to draw attention to the growing crisis in the SWNT industry as a result of the lack of quality control and the misleading advertising by suppliers of this material.  相似文献   

3.
Single-walled carbon nanotubes (SWNTs) were dispersed in pure water with a thermo-responsive amphiphilic PNIPAM150-F108-PNIPAM150 pentablock terpolymer in comparison with its precursor PEO136-PPO45-PEO136 (F108) triblock copolymer. The stability, dispersibility, and thermo-responsive behaviors of the polymer/SWNT hybrids were characterized by UV–vis–NIR spectroscopy, thermal gravimetric analysis, viscosity measurement, Raman spectroscopy, and high-resolution transmission electron microscopy. The pentablock/SWNT hybrids showed superior ability in stabilization over F108/SWNT hybrids, and no sign of sedimentation was found at room temperature for 6 weeks or even 2 months of storage. The pentablock terpolymer can efficiently disperse SWNTs into individual tubes or small bundles with average diameter of about 5 nm, and their chains were helically wrapped onto the nanotube surface, whereas the larger bundles of the nanotubes with sizes of 15–25 nm were observed in F108/SWNT hybrids. Moreover, the pentablock/SWNT hybrids switched reversibly between the well-exfoliated and the aggregated states when cyclically increasing and decreasing temperature.  相似文献   

4.
Highly stable single-walled carbon nanotube (SWNT) dispersions are obtained after ultrasonication in cellulose nanocrystal (CN) aqueous colloidal suspensions. Mild dispersion conditions were applied to preserve the SWNT length in order to facilitate the identification of hybrid objects. This led to a moderate dispersion of 24% of the SWNTs. Under these conditions, atomic force microscopy (AFM) and transmission electron microscopy (TEM) experiments succeeded in demonstrating the formation of hybrid particles in which CNs are aligned along the nanotube axis by a self-assembly process. These SWNT/CN dispersions are used to create multilayered thin films with the layer-by-layer method using polyallylamine hydrochloride as a polyelectrolyte. Homogeneous films from one to eight bilayers are obtained with an average bilayer thickness of 17 nm. The presence of SWNTs in each bilayer is attested to by characteristic Raman signals. It should be noted that these films exhibit a near-infrared luminescence signal due to isolated and well-separated nanotubes. Furthermore, scanning electron microscopy (SEM) suggests that the SWNT network is percolating through the film.  相似文献   

5.
王喆  朱赞赞  力虎林 《化学学报》2007,65(12):1149-1154
在溶有单壁碳纳米管(SWNTs)的苯胺溶液中, 通过电化学共聚合法成功制备了单壁碳纳米管(SWNT)/聚苯胺(PANI)复合膜. 用电沉积法将铂沉积到SWNT/PANI复合膜上. 样品的成分和形貌分别用XRD和SEM表征. 四探针和电化学交流阻抗的研究表明被PANI包裹的SWNTs整齐地排列在复合膜中, 从而提高了复合膜的电导率, 促进了电荷转移. 循环伏安(CV)说明Pt修饰的SWNT/PANI复合膜对于甲醛氧化具有良好的电催化活性及稳定性. 研究结果表明SWNT/PANI复合膜是一种非常好的催化剂载体, 有着广泛的应用前景.  相似文献   

6.
Resonant Raman spectroscopy and transmission electron microscopy were used to characterize the structural changes of three single-walled carbon nanotube samples processed with purification, pelletization, and surfactant-assisted dispersion. A two-stage purification process selectively removes metallic tubes as well as small-diameter ones, enriching large-diameter semiconducting tubes. Pelletizing reduces the intertube distance but greatly increases the intensity ratio of the D band to the G band. Single-walled nanotube (SWNT) bundle size decreases during ultrasonication dispersion aided by a surfactant. SWNT bundles composed of large-diameter tubes are prone to debundling.  相似文献   

7.
We describe herein the synthesis of a triptycene-based surfactant designed with the ability to solubilise single-walled carbon nanotubes (SWNTs) and C(60) in water through non-covalent interactions. Furthermore, an amphiphilic naphthalene-based surfactant with the same ability to solubilise SWNTs and C(60) has also been prepared. The compounds synthesised were designed with either two ionic or non-ionic tails to ensure a large number of supramolecular interactions with the solvent, thereby promoting strong solubilisation. The surfactants produced stable suspensions in which the SWNTs are dispersed and the surfactant/SWNT complexes formed are stable for more than one year. UV/Vis/NIR absorption spectroscopy, TEM and AFM were employed to probe the solubilisation properties of the dispersion of surfactants and SWNTs in water.  相似文献   

8.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

9.
Palladium (Pd) nanoparticles were electrochemically dispersed on single-walled carbon nanotubes (SWNTs) by electroreduction of octahedral Pd(IV) complex formed on the SWNT surface. The structure and nature of the resulting Pd-SWNT composites were characterized by transmission electron microscopy and X-ray diffraction. The electrocatalytic properties of the Pd/SWNT electrode for hydrazine oxidation have been investigated by cyclic voltammetry; high electrocatalytic activity of the Pd/SWNT electrode can be observed. This may be attributed to the high dispersion of palladium catalysts and the particular properties of SWNT supports. The results imply that the Pd-SWNT composite has good potential applications in fuel cells.  相似文献   

10.
We review the recent advances in dispersing single-wall carbon nanotubes (SWNTs) using amphiphilic surfactants in aqueous solutions. Three aspects are discussed. (1) On the organization of surfactant molecules with SWNTs, new insights at the microscopic level arise from electron microscopy and detailed computer simulation studies. (2) Quantitative measurements, such as molecular interactions between functional groups and SWNTs, the coverage of surfactant on SWNTs in solution, the charge state of the SWNT/surfactant complex, and the degree of dispersion are critical for better understanding dispersion mechanisms and for the further development of dispersion strategies. (3) The thermodynamic driving forces and the role of metastability in the structure of surfactant dispersed SWNT suspensions are analyzed. An outlook on practical and fundamental issues is also presented.  相似文献   

11.
We describe herein the synthesis of a triptycene‐based surfactant designed with the ability to solubilise single‐walled carbon nanotubes (SWNTs) and C60 in water through non‐covalent interactions. Furthermore, an amphiphilic naphthalene‐based surfactant with the same ability to solubilise SWNTs and C60 has also been prepared. The compounds synthesised were designed with either two ionic or non‐ionic tails to ensure a large number of supramolecular interactions with the solvent, thereby promoting strong solubilisation. The surfactants produced stable suspensions in which the SWNTs are dispersed and the surfactant/SWNT complexes formed are stable for more than one year. UV/Vis/NIR absorption spectroscopy, TEM and AFM were employed to probe the solubilisation properties of the dispersion of surfactants and SWNTs in water.  相似文献   

12.
A new reaction sequence for the chemical functionalization of single-wall carbon nanotubes (SWNTs) consisting of the nucleophilic addition of t-BuLi to the sidewalls of the tubes and the subsequent reoxidation of the intermediates t-Bu(n)SWNT(n-) leading to t-Bu(n)SWNT was developed. During the formation of the t-Bu(n)SWNT(n-), a homogeneous dispersion in benzene was formed due to the electrostatic repulsion of the negatively charged intermediates causing debundling. The entire reaction sequence can be repeated, and the degree of functionalization of the products (t-Bu(n))(m)SWNT (m = 1-3) increases with increasing m. Degrees of functionalization expressed as the carbon-to-addend ratio of up to 31 were reached. The reaction was studied in detail by photoelectron spectroscopy, Raman spectroscopy, and scanning tunneling microscopy (STM). The C 1s core level spectra reveal that the nucleophilic attack of the t-BuLi leads to negatively charged SWNTs. Upon oxidation, this negative charge is removed. The valence band spectra of the functionalized samples exhibit a significant reduction in the pi-derived density of states. In STM, the covalently bonded t-butyl groups attached to the sidewalls have been visualized. Raman spectroscopy reveals that addition of the nucleophile to metallic tubes is preferred over the addition to semiconducting tubes.  相似文献   

13.
Resonance Raman spectroscopy/microscopy was used to study individualized single-walled carbon nanotubes (SWNTs) both in aqueous suspensions as well as after spin-coating onto Si/SiO2 surfaces. Four different SWNT materials containing nanotubes with diameters ranging from 0.7 to 1.6 nm were used. Comparison with Raman data obtained for suspensions shows that the surface does not dramatically affect the electronic properties of the deposited tubes. Raman features observed for deposited SWNTs are similar to what was measured for nanotubes directly fabricated on surfaces using chemical vapor deposition (CVD) methods. In particular, individual semiconducting tubes could be distinguished from metallic tubes by their different G-mode line shapes. It could also be shown that the high-power, short-time sonication used to generate individualized SWNT suspensions does not induce defects in great quantities. However, (additional) defects can be generated by laser irradiation of deposited SWNTs in air, thus giving rise to an increase of the D-mode intensity for even quite low power densities (approximately 10(4) W/cm2).  相似文献   

14.
High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77 mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.  相似文献   

15.
Single-walled carbon nanotube (SWNT) bundles are selectively removed from an aqueous dispersion containing individually suspended carbon nanotubes coated with gum Arabic via interfacial trapping. The suspensions are characterized with absorbance, fluorescence, and Raman spectroscopy as well as atomic force microscopy (AFM) and rheology. The resulting aqueous suspensions have better dispersion quality after interfacial trapping and can be further improved by altering the processing conditions. A two-step extraction process offers a simple and fast approach to preparing high-quality dispersions of individual SWNTs comparable to ultracentrifugation. Partitioning of SWNTs to the liquid-liquid interface is described by free energy changes. SWNT bundles prefer to reside at the interface over individually suspended SWNTs because of greater free energy changes.  相似文献   

16.
We have succeeded in dispersing single-walled carbon nanotubes (SWNTs) into an aqueous solution of poly(ethylene glycol)-terminated malachite green derivative (PEG-MG) through simple sonication. It was found that UV exposure caused reaggregation of these predispersed SWNTs in the same aqueous medium, as adsorbed PEG-MG photochromic chains could be effectively photocleavaged from the nanotube surface. The observed light-controlled dispersion and reaggragation of SWNTs in the aqueous solution should facilitate the development of SWNT dispersions with a controllable dispersity for potential applications.  相似文献   

17.
Aligned single-walled carbon nanotubes (SWNTs) and hierarchical SWNT assembly were fabricated by electrospinning. The high fiber elongation and high DC electric field applied during the electrospinning process result in the orientation of the SWNTs along the axial direction of the fiber. The alignment of the electropsun composite fiber transfers this local SWNT orientation to macroscopically aligned SWNTs. After removing the polymer component from the aligned composite fiber, we produced large area aligned SWNTs. The results show that the directional control of SWNT alignment and debundling of SWNTs into individual tubes can be simultaneously realized.  相似文献   

18.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

19.
The charge transfer induced lithiation of single-wall carbon nanotubes (SWNTs) was investigated by in situ monitoring by Raman spectroscopy as lithium was added incrementally to a dispersion of SWNTs in liquid ammonia. Charge transfer from liquid ammonia solvated lithium to the SWNTs led to intercalation of lithium into the SWNT ropes, as well as to the semi-covalent lithiation of the SWNTs. Raman spectra of the SWNTs recorded as lithium was added showed a 30 wavenumber downshift of the G band (1594 cm−1) with the concomitant appearance of a new peak at 1350 cm−1 that was assigned as the signature of the lithiated SWNTs. Addition of 1-iodododecane to the lithiated SWNTs resulted in the covalent attachment of dodecyl groups. The intercalation of lithium throughout the SWNT ropes led to complete dodecylation of all individual SWNTs.  相似文献   

20.
HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of pi-pi stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号