首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new type of stochastic resonance that arises between two precession modes under dynamic bistability conditions and is excited by an alternating magnetic field, including a harmonic signal and a white noise, has been studied using a numerical analysis of the uniform magnetization precession in a thin film. The spectrum of the steady-state dynamics of the system at stochastic resonance has been investigated, and its distinctive features have been revealed for the longitudinal and transverse orientations of the additional alternating field.  相似文献   

2.
Spin precession waves of homogeneously precessing domains (HPD) in superfluid 3He-B have been studied at 11 bars and temperatures down to 0.45T(c). The waves were excited by an alternating longitudinal magnetic field with an axial symmetry, applied as a small perturbation ranging from 1 nT up to a few micro T. When the spin precession wave is excited, two nuclear magnetic resonances simultaneously coexist: first, the high frequency resonance used for excitation of the HPD, and, second, the low-frequency resonance of the HPD wave mode. We report the first experimental evidence of the nonlinear behavior of low-frequency precession spin wave modes of the continuously maintained HPD.  相似文献   

3.
The magnetic response of a KNbO3 crystal due to the nuclear spin precession resulting from the excitation of nuclear spins by an alternating electric field has been investigated theoretically. The converse effect, i.e., the emergence of an alternating electrical polarization as a result of the magnetic excitation of nuclear spins, has also been considered.  相似文献   

4.
Based on a numerical solution of the equations of motion found over a wide range of frequencies of an alternating magnetic field, the nonlinear precession dynamics of magnetization are studied in thin-film structures of the (100) type with a stripe domain structure in a perpendicular bias field. The conditions are determined under which high-amplitude regular and chaotic dynamic regimes occur. Bifurcational variations in the precession of coupled magnetic moments and dynamic-bistability states are detected. The specific features of the spectrum of Lyapunov exponents and of time analogs of Poincaré cross sections of trajectories in chaotic regimes are considered.  相似文献   

5.
The dynamics of the magnetization of a single-crystal film under the conditions of dynamic bistability has been investigated using numerical simulation. It has been shown that the use of an additional alternating magnetic field has made it possible to suppress the dynamic bistability of magnetization and to implement one of the two precession regimes depending on the field frequency. Multiple switching between magnetization precessions with different amplitudes can be performed directly from one regime to the other regime due to the corresponding change in the frequency of the additional magnetic field.  相似文献   

6.
The problem of hypersound excitation in a structure consisting of three magnetic layers is considered. Motion equations and boundary conditions for the components of magnetization and elastic displacement when there is an arbitrary angle of magnetization vector precession are obtained. The development of oscillations over time in an alternating field is considered.  相似文献   

7.
Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T3/2 contribution to the specific heat. These modes significantly contribute to the dynamic structure function.  相似文献   

8.
Bose-Einstein condensation of magnons in superfluid 3He-B is experimentally manifested by various states where coherent spin precession is established spontaneously, even in nonhomogeneous magnetic fields. Once such a condensate with coherent spin precession is created, it occupies the state with minimal energy, the ground state. The application of an additional magnetic field to that condensate may cause its deflection from the energy minimum and the condensate responds by creating collective gapless oscillations known as Goldstone modes. This Letter reports the experimental observation of a new (non-)Goldstone mode, which can be viewed as an additional NMR mode of condensed magnons in a rotating frame of reference.  相似文献   

9.
Paramagnetic particles in a liquid above a solid dynamically self-assemble into two-dimensional (2D) viscoelastic clusters in a processing magnetic field if the precession angle exceeds the magic angle. Hexagonal clusters rotate with a frequency proportional to the precession frequency of the magnetic field. The rotation is explained by viscoelastic shear waves excited in the clusters that can be visualized slightly above the magic angle. The cluster rotation and the visualization of viscoelastic modes are independent techniques to probe the rheological properties of the cluster. We find agreement between both techniques when determining the 2D cluster viscosity eta(c) approximately 10(-11) N s/m.  相似文献   

10.
The saturation of a spectrum with two separated spectral lines is theoretically analyzed in the presence of the spectral diffusion. Surprising effects of circularly polarized alternating magnetic field on the spectrum under saturation conditions were obtained. The alternating magnetic field pushes two lines apart, while the spectral diffusion tends to shift the lines to the center of gravity. As a result, the so-called exchange narrowing of the spectrum occurs at a higher spectral diffusion rate with the increase in the amplitude of the alternating magnetic field. The spectrum is presented as a sum of two lines which correspond to the two independent collective modes of the magnetization vectors motion. The resonance frequencies of these modes depend on the spectral diffusion rate and the intensity of the alternating magnetic field.  相似文献   

11.
We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range.  相似文献   

12.
The 5 × 5 square lattices of magnetic dipoles with cubic crystallographic anisotropy were investigated by the computer simulation method. The conditions for implementing the random orientation of lattice configurations, each of which are characterized by a certain response to the influence of an external magnetic pulse, as well as by the established regime of the oscillation of the total magnetic moment under the influence of an alternating field, are revealed. Regular vibration modes with a doubled frequency and quasi-periodic and chaotic modes are detected. The dependence of the system response on the parameters of the magnetic field pulse is studied.  相似文献   

13.
We use the dipolar fields from a magnetic cantilever tip to generate localized spin wave precession modes in an in-plane magnetized, thin ferromagnetic film. Multiple resonances from a series of localized modes are detected by ferromagnetic resonance force microscopy and reproduced by micromagnetic models that also reveal highly anisotropic mode profiles. Modeled scans of line defects using the lowest-frequency mode provide resolution predictions of (94.5±1.5) nm in the field direction, and (390±2) nm perpendicular to the field.  相似文献   

14.
We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field from the current also generates a ferromagnetic resonance signal but with a different symmetry. The ratio of these two signals allows a quantitative determination of the spin current and the spin Hall angle.  相似文献   

15.
Coherent spin precession of electrons and excitons is observed in charge tunable InP quantum dots under the transverse magnetic field by means of time-resolved Kerr rotation. In a quantum dot doped by one electron, spin precession of the doped electron in the quantum dot starts out of phase with spin precession of the doped electrons in a GaAs substrate just after a trion is formed and persists for more than 2 ns even after the trion recombines. Simultaneously spin precession of a trion (hole) starts. Observation of spin precession of both a doped electron and a trion (hole) confirms creating coherent superposition of an electron and a trion as the initialization process of spin of doped electrons in quantum dots. In a neutral quantum dot, the exciton spin precession starts out of phase with spin precession of the doped electrons in a GaAs substrate and the precession frequency does not converge to 0 at the zero field limit. It contains the electron–hole exchange interaction and corresponds to the splitting between bright and dark excitons under the transverse magnetic field.  相似文献   

16.
We report on a theoretical investigation of the magnetic static and dynamic properties of a thin ferromagnetic film with honeycomb lattice of circular antidots using micromagnetic simulations and analytical calculations. The theoretical model is based on the Landau–Lifshitz equations and directly accounts for the effects of the magnetic state nonuniformity. A direct calculation of local dynamic susceptibility tensor yields that the resonance spectra consist of four different quasi-uniform modes of the magnetization precession related to the confinement of magnetic domains by the hole mesh. Three of four resonant modes follow a two-fold variation with respect to the in-plane orientation of the applied magnetic field. The easy axes of these modes are mutually rotated by 60° and combine to yield the apparent six-fold configurational anisotropy. Additionally, a mode with intrinsic six-fold symmetry behavior exists, as well. Micromagnetic calculations of the local dynamic susceptibility tensor allow identifying the magnetic unit cell areas/domains responsible for each resonance mode.  相似文献   

17.
Equilibrium states of different systems formed by coupled spherical bodies with dipole magnetic moments have been investigated using a numerical analysis. The bistable states and the corresponding values of the net magnetic moment are determined for a number of planar and three-dimensional systems of dipoles, and the conditions providing the existence of orientational configurations of coupled dipoles involved in the bistability are analyzed. The disturbances of the magnetic moment due to the quasi-static passage of an additional dipole and the dynamic modes excited by a homogeneous alternating magnetic field and represented by periodic, quasi-periodic, and chaotic oscillations of the magnetic moment of the system are considered for several types of systems. The bifurcation diagrams of the dynamic modes are constructed, and the specific features typical of the systems under consideration are revealed.  相似文献   

18.
陈洁  秦明  黄庆安 《中国物理 B》2011,20(9):97101-097101
A new method to detect the magnetic field direction by using a silicon structure is presented in this paper. The structure includes a micro beam and an in-plane coil electrode. When the electrode under a magnetic field is applied with an alternating current, the micro beam is actuated under the effect of the Lorentz forces. Magnetic fields of different directions cause different vibration profiles. The direction of the magnetic field is obtained by measuring the vibration amplitudes of the micro beam, which is driven to work at first- and second-order resonant modes. A micro structure has been fabricated using the bulk micromachined silicon process. A laser Doppler vibrometer system is implemented to measure the vibration amplitudes. The experimental results show that the amplitude of the structure, which depends on the different modes, is a sine or cosine function of the angle of the magnetic field. It agrees well with the simulation result. Currently a resolution of 10° for the magnetic field direction measurement can be obtained using the detecting principle.  相似文献   

19.
Contributions of homogeneous and Goldstone modes of the spin precession were distinguished in FMR spectra of Cr1/3NbS2 chiral helimagnet. The resonance field of homogeneous mode is determined by uniaxial magnetic anisotropy. The resonance field of Goldstone mode is determined by six-fold anisotropy in basal plane. For the first time, it has been shown experimentally that effective excitation of Goldstone mode is realized only when microwave magnetic field vector h is perpendicular to wave vector of magnetic structure Q.  相似文献   

20.
X‐ray detected magnetic resonance (XDMR) is a new element‐selective spectroscopy in which X‐ray magnetic circular dichroism is used to probe the resonant precession of spin and orbital magnetization components when a strong microwave pump field is applied perpendicularly to the static bias field. Experimental configurations suitable for detecting the very weak XDMR signal are compared. XDMR signatures were measured in yttrium iron garnet and related thin films on exciting not only the iron K‐edge but also the yttrium at diamagnetic sites. These measurements are shown to yield unique information regarding the wide‐angle precession of induced magnetization components involving either orbital p‐projected densities of states at the iron sites, or spin polarized d‐projected densities of states at the yttrium sites. Extending XDMR measurements into the millimeter wave range would make it possible to study paramagnetic systems routinely and investigate optical modes as well as acoustic modes in ferrimagnetic/antiferromagnetic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号