首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

2.
《Electroanalysis》2005,17(20):1854-1860
A novel type of sol‐gel inorganic‐organic hybrid material coated on glassy carbon electrode used for immobilization of double‐stranded DNA (dsDNA) and study of dsDNA with redox‐active molecules was developed. The hybrid material coating was produced by sol‐gel method with nano hydroxyapatite (HAp)‐polyvinyl alcohol (PVA). The optimum composition of the hybrid material was first examined, and the morphology of the nano HAp‐PVA coatings was investigated with the help of Scanning Electron Microscope (SEM). DsDNA was immobilized in/on the nano HAp‐PVA hybrid coatings by adsorption and the characteristics of the dsDNA/HAp‐PVA/GCE were studied by cyclic voltammetry (CV) using the probes of Co(phen) and Fe(CN) . The results indicate that the dsDNA can be immobilized on the nano porous HAp‐PVA coating effectively and its stability can satisfy the necessity of study on the interactions of dsDNA with redox‐active molecules on the electrode surface. Co(bpy) and Co(phen) were used as the model molecule to study the interactions of dsDNA with redox‐active molecules. Information such as ratio (KOx/KRed) of the binding constant for the oxidized and reduced forms of a bound species, interaction mode, including change in the mode of interaction, and “limiting” ratio K /K at zero ionic strength (μ) can be obtained using dsDNA/HAp‐PVA/GCE with about 2 μg of DNA samples.  相似文献   

3.
《Electroanalysis》2006,18(9):873-881
In this paper, we present an impedance‐based DNA biosensor using thionine intercalation to amplify DNA hybridization signal. Beacon single‐stranded DNA (ssDNA) probe and mercaptoacetic acid were self‐assembled onto a Au electrode by forming Au? S bonds. These beacon ssDNAs were hybridized with the complementary sequences around the loop structure. Then thionine was intercalated into the double‐stranded DNA (dsDNA) immobilized on the Au electrode surface. Due to the neutralization of the negative charges of dsDNA by the intercalated thionine, the electronic transfer resistance (Ret) of the DNA modified Au electrode was significantly diminished. Herein, the decreased value of Ret resulted from the thionine intercalating into dsDNA was employed as the hybridization signal. SDS was used to reduce the unspecific adsorption between ssDNA and thionine. Several experimental conditions, including the surface coverage of ssDNA probe on Au electrode, the hybridization temperature and time were all optimized. Moreover, the hybridization reactions of the unstructured linear ssDNA probe and the structured beacon ssDNA probe with their complementary sequences were compared in this work. The sensitivity of the presented DNA biosensor highlighted that the intercalation of thionine into dsDNA was an efficient approach to amplify the hybridization signal using impedance detection technique. Additionally, in this DNA biosensing protocol, beacon ssDNA has a good ability to distinguish target DNA sequences. This results in a higher specificity than using traditional unstructured DNA probe.  相似文献   

4.
A highly effective strategy for quantification of plasmid which was a special dsDNA based on bisPNA by electrochemical impedance spectroscopy was presented in this work. Firstly, through Au?S bond, thiol‐terminated bisPNA probes were immobilized onto the gold electrode surface. Then bisPNA probes directly hybridized with target plasmid DNA pBR322 based on the PNA.DNA‐PNA invasion triplex without denaturation. In the presence of redox electroactive ions [Fe(CN)6]3?/4? as hybridization indicator, the charge transfer resistance (Rct) was produced, and Rct was measured via electrochemical impedance spectroscopy. Under optimal conditions, this strategy showed a good linear relationship between the ΔRct which was the difference of Rct obtained before and after bisPNA hybridized with plasmid pBR322, and logarithm of the concentration of plasmid pBR322 within the range from 1 nM to 100 nM (R2=0.993), with a limit of detection (LOD) of 0.1 nM. Furthermore, this bisPNA‐assisted biosensor showed good stability and satisfactory analytical reliability. In addition, this novel bisPNA‐assisted biosensor also exhibited excellent analytical results in human serum.  相似文献   

5.
In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)]2+ (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)]2+ is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)]2+ through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs–Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.  相似文献   

6.
Telomerase inhibition is an attractive strategy for cancer chemotherapy. In the current study, we have synthesized and characterized two chiral ruthenium(II) complexes, namely, Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+, where phen is 1,10‐phenanthroline and p‐MOPIP is 2‐(4‐methoxyphenyl)‐imidazo[4,5f][1,10]phenanthroline. The chiral selectivity of the compounds and their ability to discriminate quadruplex DNA were investigated by using UV/Vis, fluorescence spectroscopy, circular dichroism spectroscopy, fluorescence resonance energy transfer melting assay, polymerase chain reaction stop assay and telomerase repeat amplification protocol. The results indicate that the two chiral compounds could induce and stabilize the formation of antiparallel G‐quadruplexes of telomeric DNA in the presence or absence of metal cations. We report the remarkable ability of the two complexes Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+ to stabilize selectively G‐quadruplex DNA; the former is a better G‐quadruplex binder than the latter. The anticancer activities of these complexes were evaluated by using the MTT assay. Interestingly, the antiproliferative activity of Λ‐[Ru(phen)2(p‐MOPIP)]2+ was higher than that of Δ‐[Ru(phen)2(p‐MOPIP)]2+, and Λ‐[Ru(phen)2(p‐MOPIP)]2+ showed a significant antitumor activity in HepG2 cells. The status of the nuclei in Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+‐treated HepG2 cells was investigated by using real‐time living cell microscopy to determine the effects of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ on intracellular accumulation. The results show that Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ can be taken up by HepG2 cells and can enter into the cytoplasm as well as accumulate in the nuclei; this suggests that the nuclei were the cellular targets of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+.  相似文献   

7.
A label‐free DNA biosensor based on three‐dimensional reduced graphene oxide (3D‐rGO) and polyaniline (PANI) nanofibers modified glassy carbon electrode (GCE) was successfully developed for supersensitive detection of breast cancer BRCA1. The results demonstrated that 3D‐rGO and PANI nanofibers had synergic effects for reducing the charge transfer resistance (Rct), meaning a huge enhancement in electrochemical activity of 3D‐rGO‐PANI/GCE. Probe DNA could be immobilized on 3D‐rGO‐PANI/GCE for special and sensitive recognition of target DNA (1.0×10?15–1.0×10?7 M) with a theoretical LOD of 3.01×10?16 M (3S/m). Furthermore, this proposed nano‐biosensor could directly detect BRCA1 in real blood samples.  相似文献   

8.
The environmental effects on the structural and photophysical properties of [Ru(L)2(dppz)]2+ complexes (L=bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline, tap=1,4,5,8‐tetraazaphenanthrene; dppz=dipyrido[3,3‐a:2′,3′‐c]phenazine), used as DNA intercalators, have been studied by means of DFT, time‐dependent DFT, and quantum mechanics/molecular mechanics calculations. The electronic characteristics of the low‐lying triplet excited states in water, acetonitrile, and DNA have been investigated to decipher the influence of the environment on the luminescent behavior of this class of molecules. The lowest triplet intra‐ligand (IL) excited state calculated at λ≈800 nm for the three complexes and localized on the dppz ligand is not very sensitive to the environment and is available for electron transfer from a guanine nucleobase. Whereas the lowest triplet metal‐to‐ligand charge‐transfer (3MLCT) states remain localized on the ancillary ligand (tap) in [Ru(tap)2(dppz)]2+, regardless of the environment, their character is drastically modified in the other complexes [Ru(phen)2(dppz)]2+ and [Ru(bpy)2(dppz)]2+ upon going from acetonitrile (MLCTdppz/phen or MLCTdppz/bpy) to water (MLCTdppz) and DNA (MLCTphen and MLCTbpy). The change in the character of the low‐lying 3MLCT states accompanying nuclear relaxation in the excited state controls the emissive properties of the complexes in water, acetonitrile, and DNA. The light‐switching effect has been rationalized on the basis of environment‐induced control of the electronic density distributed in the lowest triplet excited states.  相似文献   

9.
This work deals with the study of the interaction between acridine orange (AO) and calf‐thymus double stranded DNA (dsDNA) present in supramolecular architectures built on gold electrodes modified with mercapto‐1‐propanesulfonic acid (MPS) by self‐assembling of polyethylenimine and dsDNA. The optimal conditions for building the supramolecular architecture were obtained from UV‐vis spectrophotometric experiments. The electrochemical studies were performed by adsorptive transfer square wave voltammetry from the evaluation of the oxidation signal of AO accumulated within the multistructure. The effect of the number of PEI‐dsDNA bilayers (Au/MPS/(PEI‐dsDNA)n) on the accumulation and electrooxidation of AO is also discussed.  相似文献   

10.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   

11.
Two new complexes, [Ru(phen)2(ppd)]2+ ( 1 ) and [Ru(phen)(ppd)2]2+ ( 2 ) (ppd=pteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, phen=1,10‐phenanthroline) were synthesized and characterized by ES‐MS, 1H‐NMR spectroscopy, and elemental analysis. The intercalative DNA‐binding properties of 1 and 2 were investigated by absorption‐spectroscopy titration, luminescence‐spectroscopy studies, thermal denaturation, and viscosity measurements. The theoretical aspects were further discussed by comparative studies of 1 and 2 by means of DFT calculations and molecular‐orbital theory. Photoactivated cleavage of pBR322 DNA by the two complexes were also studied, and 2 was found to be a much better photocleavage reagent than 1 . The mechanism studies revealed that singlet oxygen and the excited‐states redox potentials of the complex may play an important role in the DNA photocleavage.  相似文献   

12.
The design of photoactive functionalized electrodes for the sensitive transduction of double‐stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy‐pyrrole)2(dppn)]2+ (bpy‐pyrrole=4‐methyl‐4′‐butylpyrrole‐2,2′‐bipyridine, dppn=benzo[i]dipyrido[3,2‐a:2′,3′‐c]phenazine) exhibiting photosensitive, DNA‐intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized RuII complex, the binding of a double‐stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double‐stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×106 L mol?1 to be estimated. The low detection limit of 1 fmol L?1 and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.  相似文献   

13.
The ligand pteridino[6,7‐f] [1,10]phenanthroline‐11,13‐diamine (ppn) and its RuII complexes [Ru(bpy)2(ppn)]2+ ( 1 ; bpy=2,2′‐bipyridine) and [Ru(phen)2(ppn)]2+ ( 2 ; phen=1,10‐phenanthroline) were synthesized and characterized by elemental analysis, electrospray MS, 1H‐NMR, and cyclic voltammetry. The DNA‐binding behaviors of 1 and 2 were studied by spectroscopic and viscosity measurements. The results indicate that both complexes strongly bind to calf‐thymus DNA in an intercalative mode, with DNA‐binding constants Kb of (1.7±0.4)?106 M ?1 and (2.6±0.2)?106 M ?1, respectively. The complexes 1 and 2 exhibit excellent DNA‐‘light switch’ performances, i.e., they do not (or extremely weakly) show luminescence in aqueous solution at room temperature but are strongly luminescent in the presence of DNA. In particular, the experimental results suggest that the ancillary ligands bpy and phen not only have a significant effect on the DNA‐binding affinities of 1 and 2 but also have a certain effect on their spectral properties. [Ru(phen)2(ppn)]2+( 2 ) might be developed into a very prospective DNA‐‘light switch’ complex. To explain the DNA‐binding and spectral properties of 1 and 2 , theoretical calculations were also carried out applying the DFT/TDDFT method.  相似文献   

14.
The structural modification of ssDNA‐based aptamers upon specific binding of its target molecule leads to changes of the charge‐transfer resistance (Rct) of a negatively‐charged free‐diffusing redox probe. The aptamer adopts a structure due to self‐hybridization which is stabilized using profalvine as intercalator. The pre‐organized aptamer structure is used to detect chloramphenicol (CAP) requiring a substantial change of the aptamer structure indicated by a CAP concentration dependent increase in the Rct values. Pre‐incubation of the aptamer‐modified electrode with an intercalator allows for the modulation of the aptamer/target interaction and hence for a modulation of the CAP‐dependent variation of the Rct values.  相似文献   

15.
We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single‐stranded DNA. The local environment presented by a well‐known [Ru(dipyrido[3,2‐a:2′,3′‐c]phenazine)L2]2+‐based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single‐strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single‐stranded DNA. This complex shows promise as a new dye capable of selectively staining double‐ versus single‐stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes.  相似文献   

16.
The interaction of gallocyanine (GC) with double‐stranded DNA (dsDNA) in pH 3.5 Tris‐HCl buffer solution was investigated by electrochemical methods and spectrophotometric methods as well. In the potential scan range of ‐0.25 ? +0.18 V(vs. SCE), GC had a couple of well‐defined redox peaks at ‐0.022 V and ‐0.069 V on a cyclic voltammogram at the scan rate of 100.0 mV/s, respectively. After the addition of dsDNA into the GC solution, the redox‐peak currents decreased obviously and the peak potentials shifted positively. The results demonstrated that GC binding to DNA was caused by intercalation. Electrochemical parameters such as the electron number (n), the charge transfer coefficient (α) and the electrochemical reaction standard rate constant (ks) were calculated and compared in the absence and presence of dsDNA. Almost unchanged values of the electrochemical parameters after adding dsDNA showed that non‐electroactive complexes were formed when GC interacted with DNA. The results indicated that the decrease of the redox‐peak currents was caused by the decrease of the free concentration of GC in the reaction solution. The binding constant and binding ratio were investigated by spectrophotometric methods. DNA concentration can be determined by the decrease of the peak current of GC. The linear range for dsDNA was in the range of 1.45 × 10?7 ? 1.45 × 10?6mol/Land 1.45 × 10?6 ? 1.45 × 10?5 mol/L, respectively with the linear regression equation as ΔiP (10?7 A) = 0.037 + 0.018C (10?7mol/L), and ΔiP (10?7 A) = 0.25 + 0.041C (10?6mol/L), respectively, and the detection limit (3σ) was 1.13 × 10?7 mol/L.  相似文献   

17.
In this study, we for the first time presented an efficient, accurate, rapid, simple and ultrasensitive detection system for small molecule ochratoxin A (OTA) by using the integration of loop-mediated isothermal amplification (LAMP) technique and subsequently direct readout of LAMP amplicons with a signal-on electrochemiluminescent (ECL) system. Firstly, the dsDNA composed by OTA aptamer and its capture DNA were immobilized on the electrode. After the target recognition, the OTA aptamer bond with target OTA and subsequently left off the electrode, which effectively decreased the immobilization amount of OTA aptamer on electrode. Then, the remaining OTA aptamers on the electrode served as inner primer to initiate the LAMP reaction. Interestingly, the LAMP amplification was detected by monitoring the intercalation of DNA-binding Ru(phen)32+ ECL indictors into newly formed amplicons with a set of integrated electrodes. The ECL indictor Ru(phen)32+ binding to amplicons caused the reduction of the ECL intensity due to the slow diffusion of Ru(phen)32+–amplicons complex to the electrode surface. Therefore, the presence of more OTA was expected to lead to the release of more OTA aptamer, which meant less OTA aptamer remained on electrode for producing LAMP amplicons, resulting in less Ru(phen)32+ interlaced into the formed amplicons within a fixed Ru(phen)32+ amount with an obviously increased ECL signal input. As a result, a detection limit as low as 10 fM for OTA was achieved. The aptasensor also has good reproducibility and stability.  相似文献   

18.
An electrochemical drug‐DNA biosensor was developed for the detection of interaction between the anti‐cancer drug, Temozolomide (TMZ), and DNA sequences by using Differential Pulse Voltammetry at the graphite electrode surfaces. TMZ is a pro‐drug and an alkylating agent that crosses the blood‐brain barrier, so it is mainly used for brain cancers treatment. In this study, we aim to develop a‐proof‐of‐concept study to investigate the effect of TMZ on formerly methylated DNA sequences since TMZ shows its anti‐cancer activity by methylating the DNA. Interaction between TMZ and DNA causes localized distortion of DNA away from an idealized B‐form, resulting in a wider major groove and greater steric accessibility of functional groups in the base of the groove. According to the results, TMZ behaves as a ‘hybridization indicator’ because of its different electrochemical behavior to different strands of DNA. After interaction with TMZ, hybrid (double stranded DNA‐dsDNA) signals decreased dramatically whereas probe (single stranded DNA‐ssDNA) and control signals remain almost unchanged. The signal differences enabled us to distinguish ssDNA and dsDNA without using a label or tag. It is the first study to demonstrate the interaction between the TMZ and dsDNA created from probe and target. We use specific oligonucleotides sequences instead of using long dsDNA sequences.  相似文献   

19.
The bi‐exponential emission decay of [Ru(L)2dppz]2+ (L=N,N′‐diimine ligand) bound to DNA has been studied as a function of polynucleotide sequence, enantiomer, and nature of L (phenanthroline vs. bipyridine). The lifetimes (τi) and pre‐exponential factors (αi) depend on all three parameters. With [poly(dA‐dT)]2, the variation of αi with [Nu]/[Ru] has little dependence on L for Λ‐[Ru(L)2dppz]2+ but a substantial dependence for Δ‐[Ru(L)2dppz]2+. With [poly(dG‐dC)]2, by contrast, the Λ‐enantiomer αi values depend strongly on the nature of L, whereas those of the Δ‐enantiomer are relatively unaffected. DNA‐bound linked dimers show similar photophysical behaviour. The lifetimes are identified with two geometries of minor‐groove intercalated [Ru(L)2dppz]2+, resulting in differential water access to the phenazine nitrogen atoms. Interplay of cooperative and anti‐cooperative binding resulting from complex–complex and complex–DNA interactions is responsible for the observed variations of αi with binding ratio. [Ru(phen)2dppz]2+ emission is quenched by guanosine in DMF, which may further rationalise the shorter lifetimes observed with guanine‐rich DNA.  相似文献   

20.
《Electroanalysis》2006,18(15):1471-1478
In this paper, we present an electrochemical impedance‐based DNA biosensor by using a composite material of polypyrrole (PPy) and multiwalled carbon nanotubes (MWNTs) to modify glassy carbon electrode (GCE). The polymer film was electropolymerized onto GCE by cyclic voltammetry (CV) in the presence of carboxylic groups ended MWNTs (MWNTs‐COOH). Such electrode modification method is new for DNA hybridization sensor. Amino group ended single‐stranded DNA (NH2‐ssDNA) probe was linked onto the PPy/MWNTs‐COOH/GCE by using EDAC, a widely used water‐soluble carbodiimide for crosslinking amine and carboxylic acid group. The hybridization reaction of this ssDNA/PPy/MWNTs‐COOH/GCE resulted in a decreased impedance, which was attributed to the lower electronic transfer resistance of double‐stranded DNA than single‐stranded DNA. As the result of the PPy/MWNTs modification, the electrode obtained a good electronic transfer property and a large specific surface area. Consequently, the sensitivity and selectivity of this sensor for biosensing DNA hybridization were improved. Complementary DNA sequence as low as 5.0×10?12 mol L?1 can be detected without using hybridization marker or intercalator. Additionally, it was found that the electropolymerization scan rate was an important factor for DNA biosensor fabrication. It has been optimized at 20 mV s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号