首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four new cycloartane (=9,19‐cyclolanostane) glycosides 1 – 4 were isolated from the aerial parts of Thalictrum fortunei (Ranunculaceae). The structures of these new glycosides were elucidated as (3β,16β,24S)‐cycloartane‐3,16,24,25,30‐pentol 3,25‐di‐β‐D ‐glucopyranoside ( 1 ), (3β,16β,24S)‐24‐(acetyloxy)cycloartane‐3,16,25,30‐tetrol 3,25‐di‐β‐D ‐glucopyranoside ( 2 ), (3β,16β,24S)‐24‐(acetyloxy)‐3‐(β‐D ‐glucopyranosyloxy)cycloartane‐16,25,30‐triol 25‐[β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 3 ), and (3β,16β,24S)‐24‐(acetyloxy)‐3‐(β‐D ‐glucopyranosyloxy)cycloartane‐16,25,30‐triol 25‐[β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐glucopyranoside] ( 4 ). The structure elucidations were accomplished by 1D ‐ and 2D‐NMR methods, HR‐ESI‐MS, and hydrolysis.  相似文献   

2.
Two new monodesmosidic cycloartane triterpene glycosides, depressosides E and F, and two new flavonol glycosides, depressonol A and B, were isolated from the butanol‐soluble part of the EtOH extract of Corchorus depressus L . The structures of the new compounds were elucidated as (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranoside] ( 1 ), (22R,24S)‐22,25‐epoxy‐9,19‐cyclolanostane‐3β,16β,24‐triol 3‐[α‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranoside] ( 2 ), kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 4 ), and kaempferol 3‐[β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranoside] 7‐[α‐L ‐arabinofuranoside] ( 5 ) on the basis of chemical evidence and detailed spectroscopic studies.  相似文献   

3.
Four new glycosides, the bibenzyl glycoside α,β‐dihydrostilbene‐2,4′,5‐triol 2,5‐di‐(β‐D ‐glucopyranoside) ( 1 ), the shikimic acid glycoside shikimic acid 4‐(β‐D ‐xylopyranoside) ( 2 ), and two phenylethanoid glycosides 2‐(3,4‐dihydroxyphenyl)ethyl Oα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐allopyranoside ( 3 ) and 2‐(3,4‐dihydroxyphenyl)ethyl Oβ‐D ‐xylopyranosyl‐(1→6)‐β‐D ‐allopyranoside ( 4 ), together with three known aromatic glycosides were isolated from the H2O‐soluble fraction of the EtOH extract of the liverwort Marchantia polymorpha. Their structures were elucidated on the basis of chemical and spectroscopic evidences.  相似文献   

4.
Two new spirostanol saponins, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐(β‐D ‐xylopyranoside) ( 1 ) and (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranoside] ( 2 ), along with two known compounds, (1β,3β,5β,25S)‐spirostan‐1,3‐diol 1‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐xylopyranoside] ( 3 ) and (1β,3β,4β,5β,25S)‐spirostan‐1,3,4,5‐tetrol 5‐(β‐D ‐glucopyranoside) ( 4 ) were isolated from the whole plant of Reineckia carnea. The structures of the new steroids were determined by detailed analysis of their 1D‐ and 2D‐NMR spectra and chemical methods, and by comparison with spectral data of known compounds. Compounds 3 and 4 were isolated from the genus Reineckia for the first time.  相似文献   

5.
Two novel echinocystic acid (=(3β,16α)‐3,16‐dihydroxyolean‐12‐en‐28‐oic acid) glycosides, foetidissimosides C ( 1 ), and D ( 2 ), along with new cucurbitane glycosides, i.e., foetidissimosides E/F ( 3 / 4 ) as an 1 : 1 mixture of the (24R)/(24S) epimers, were obtained from the roots of Cucurbita foetidissima. Their structures were elucidated by means of a combination of homo‐ and heteronuclear 2D‐NMR techniques (COSY, TOCSY, NOESY, ROESY, HSQC, and HMBC), and by FAB‐MS. The new compounds were characterized as (3β,16α)‐28‐{[Oβ‐D ‐glucopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl]oxy}‐16‐hydroxy‐28‐oxoolean ‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 1 ), (3β,16α)‐16‐hydroxy‐28‐oxo‐28‐{{Oβ‐D ‐xylopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐O‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl}oxy}olean‐12‐en‐3‐yl β‐D ‐glucopyranosiduronic acid ( 2 ), and (3β,9β,10α,11α,24R)‐ and (3β,9β,10α,11α,24S)‐25‐(β‐D ‐glucopyranosyloxy)‐9‐methyl‐19‐norlanost‐5‐en‐3‐yl 2‐Oβ‐D ‐glucopyranosyl‐β‐D ‐glucopyranoside ( 3 and 4 , resp.).  相似文献   

6.
Molecular diversity was generated by hydrolyzing the crude root saponins of Panax notoginseng (Burk .) F. H. Chen under mild acidic condition (AcOH/EtOH 1 : 1). From the acid hydrolysate, five new dammarane glycosides, named notoginsenoside T1 (=(3β,6α,12β,20E,23RS)‐24,25‐epoxy‐6‐[(β‐D ‐glucopyranosyl)oxy]‐dammar‐20(22)‐ene‐3,12,23‐triol; 1 ), notoginsenoside T2 (=(3β,6α,12β,20E,23RS)‐24,25‐epoxy‐6‐[(β‐D ‐glucopyranosyl)oxy]‐23‐methoxydammar‐20(22)‐ene‐3,12‐diol; 2 ), notoginsenoside T3 (=(3β,6α,12β,20S)‐6‐[(β‐D ‐glucopyranosyl)oxy]‐20‐ethoxydammar‐24‐ene‐3,12‐diol; 3 ), notoginsenoside T4 (=(3β,6α,12β,20S,22E,24RS)‐6‐[(β‐D ‐glucopyranosyl)oxy]dammar‐22‐ene‐3,12,20,24,25‐pentol; 4 ), and notoginsenoside T5 (=(3β,6α,12β, 24E)‐6‐[(β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl)oxy]dammara‐20(21),24‐diene‐3,12‐diol; 5 ), were isolated, together with 15 known dammarane glycosides, and their structures were elucidated on the basis of spectroscopic evidence. Among the known compounds, ginsenosides Rg3 and Rh1 were isolated as major constituents, in addition to ginsenosides Rg5, Rh4, and a mixture of (20R)‐ and (20S)‐25‐hydroxyginsenoside Rh1, all of which were obtained from P. notoginseng for the first time.  相似文献   

7.
Three new furostanol glycosides, named ciliatasides A, B, and C ( 1 – 3 , resp.), have been isolated from the roots of Digitalis ciliata, along with two known furostanol glycosides. The structures of the new compounds were identified as (2α,3β,5α,14β,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxyfurost‐20(22)‐en‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 1 ), (2α,3β,5α,14β,22R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxy‐22‐methoxyfurost‐25(27)‐en‐3‐yl β‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), and (2α,3β,5α,14β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2,22‐dihydroxyfurostan‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 3 ).  相似文献   

8.
Two new tridesmosidic glycosides of (3β,6α,16β,20R,24S)‐20,24‐epoxycycloartane‐3,6,16,25‐tetrol (=cycloastragenol), armatosides I and II ( 1 and 2 , resp.), were isolated from the roots of Astragalus armatus (Fabaceae) as well as the known bidesmosidic glycosides of cycloastragenol, trigonoside II ( 3 ) and trojanoside H ( 4 ). Their structures were elucidated as (3β,6α,16β,20R,24S)‐3‐O‐(2,3‐di‐O‐acetyl‐β‐D ‐xylopyranosyl)‐20,24‐epoxy‐25‐Oβ‐D ‐glucopyranosyl‐6‐Oβ‐D ‐xylopyranosylcycloartane‐3,6,16,25‐tetrol ( 1 ), and (3β,6α,16β,20R,24S)‐3‐O‐(2‐O‐acetyl‐β‐D ‐xylopyranosyl)‐20,24‐epoxy‐25‐Oβ‐D ‐glucopyranosyl‐6‐Oβ‐D ‐xylopyranosylcycloartane‐3,6,16,25‐tetrol ( 2 ). These structures were established by extensive NMR and MS analyses and by comparison with literature data.  相似文献   

9.
Five new steroidal glycosides were isolated from the roots of Balanites aegyptiaca, a widely used African medicinal plant. On the basis of spectroscopic and chemical evidence, their structures were determined as (3β,12α,14β,16β)‐12‐hydroxycholest‐5‐ene‐3,16‐diyl bis(β‐D ‐glucopyranoside) ( 1 ), (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 and 3 , resp.), and (3β,20S,22R,25R)‐ and (3β,20S,22R,25S)‐spirost‐5‐en‐3‐yl β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→4)[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 4 and 5 , resp.)  相似文献   

10.
Two new C22‐steroidal lactone glycosides, ypsilactosides A ( 1 ) and B ( 2 ), were isolated from the EtOH extract of the whole plant of Ypsilandra thibetica. Their structures were established as (3β,5α,16β,20S)‐3,16‐dihydroxy‐6‐oxopregnane‐20‐carboxylic acid γ‐lactone 3‐(β‐D ‐glucopyranoside) ( 1 ) and (3β,16β)‐3,16‐dihydroxypregna‐5,20‐diene‐20‐carboxylic acid γ‐lactone 3‐{Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 2 ) on the basis of extensive spectroscopic analyses and chemical degradations.  相似文献   

11.
Two new compounds, (6S,13S)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,14‐dien‐13‐ol ( 1 ) and kadsuric acid 3‐methyl ester ( 2 ), together with nine known compounds, (6S,13E)‐6‐{[β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}cleroda‐3,13‐dien‐15‐ol ( 3 ), (6S,13S)‐6‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 4 ), (6S,13S)‐6‐{[6‐Oβ‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranosyl]oxy}‐13‐{[α‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐fucopyranosyl]oxy}cleroda‐3,14‐diene ( 5 ), 15‐hydroxydehydroabietic acid ( 6 ), 15‐hydroxylabd‐8(17)‐en‐19‐oic acid ( 7 ), junicedric acid ( 8 ), (4β)‐kaur‐16‐en‐18‐oic acid ( 9 ), (4β)‐16‐hydroxykauran‐18‐oic acid ( 10 ), and (4β,16β)‐16‐hydroxykauran‐18‐oic acid ( 11 ) were isolated from the fronds of Dicranopteris linearis or D. ampla. Their structures were established by extensive 1D‐ and 2D‐NMR spectroscopy. Compounds 1 and 3 – 8 showed no anti‐HIV activities.  相似文献   

12.
Four new triterpenoid glycosides named asiaticoside C ( 1 ), D ( 2 ), E ( 3 ), and F ( 4 ) were isolated from the BuOH fraction of the EtOH extract of whole plants of Centella asiatica, together with three known compounds, asiaticoside ( 5 ), madecassoside ( 6 ), and scheffuroside B ( 7 ). Based on FAB‐MS, IR, 1H‐ and 13C‐NMR, and 2D‐NMR data (HMQC, HMBC, COSY), the structures of the new compounds were determined as (2α,3β,4α)‐23‐(acetyloxy)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), (2α,3β)‐2,3‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), asiatic acid 6‐Oβ‐D ‐glycopyranosyl‐β‐D ‐glucopyranosyl ester ( 3 ), (3β,4α)‐3,23‐dihydroxyurs‐12‐en‐28‐oic acid Oα‐L ‐rhamnopyranosyl‐(1→4)‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ).  相似文献   

13.
Four new 9,10‐secocycloartane (=9,19‐cyclo‐9,10‐secolanostane) triterpenoidal saponins, named huangqiyenins G–J ( 1 – 4 , resp.), were isolated from Astragalus membranaceus Bunge leaves. The acid hydrolysis of 1 – 4 with 1M aqueous HCl yielded D ‐glucose, which was identified by GC analysis after treatment with L ‐cysteine methyl ester hydrochloride. The structures of 1 – 4 were established by detailed spectroscopic analysis as (3β,6α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐10,16‐dihydroxy‐12‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 1 ), (3β,6a,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐12,16‐dioxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 2 ), (3β,6α,9α,10α,16β,24E)‐3,6‐bis(acetyloxy)‐9,10,16‐trihydroxy‐9,19‐cyclo‐9,10‐secolanosta‐11,24‐dien‐26‐yl β‐D ‐glucopyranoside ( 3 ), and (3β,6α,10α,24E)‐3,6‐bis(acetyloxy)‐10‐hydroxy‐16‐oxo‐9,19‐cyclo‐9,10‐secolanosta‐9(11),24‐dien‐26‐yl β‐D ‐glucopyranoside ( 4 ).  相似文献   

14.
Three new kaempferol glycosides, kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside ( 1 ), kaempferol 3‐O‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 2 ), and kaempferol 3‐Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐galactopyranosyl‐7‐Oβ‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside ( 3 ), were isolated from the whole herbs of Cardamine leucantha, along with three known kaempferol glycosides, kaempferol 7‐Oα‐L ‐rhamnopyranoside, kaempferitrin, and kaempferol 3‐Oβ‐D ‐galactopyranosyl‐7‐Oα‐L ‐rhamnopyranoside. Their structures were elucidated on the basis of spectroscopic methods.  相似文献   

15.
Phytochemical analyses were carried out on the rhizomes of Clintonia udensis (Liliaceae) with particular attention paid to the steroidal glycoside constituents, resulting in the isolation of three new polyhydroxylated spirostanol glycosides, named clintonioside A ( 1 ), B ( 2 ), and C ( 3 ). On the basis of their spectroscopic data, including 2D‐NMR spectroscopy, in combination with acetylation and hydrolytic cleavage, the structures of 1 – 3 were determined to be (1β,3β,23S,24S,25R)‐1,23,24‐trihydroxyspirost‐5‐en‐3‐yl Oβ‐D ‐glucopyranosyl‐(1→4)‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 1 ), (1β,3β,23S,24S)‐3,21,23,24‐tetrahydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ), and (1β,3β,23S,24S)‐21‐(acetyloxy)‐24‐[(6‐deoxy‐β‐D ‐gulopyranosyl)oxy]‐3,23‐dihydroxyspirosta‐5,25(27)‐dien‐1‐yl Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ).  相似文献   

16.
A new furostanol saponin, sisalasaponin C ( 1 ), and a new spirostanol saponin, sisalasaponin D ( 2 ), were isolated from the fresh leaves of Agave sisalana, along with three other known steroidal saponins and two stilbenes. Their structures were identified as (3β,5α,6α,22α,25R)‐3,26‐bis[(β‐D ‐glucopyrano‐ syl)oxy]‐22‐hydroxyfurostan‐6‐yl β‐D ‐glucopyranoside ( 1 ), (3β,5α,25R)‐12‐oxospirostan‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), (3β,5α,6α,22α,25R)‐22‐methoxyfurostane‐3,6,26‐triyl tris‐β‐D ‐glucopyranoside, cantalasaponin‐1, polianthoside D, (E)‐ and (Z)‐2,3,4′,5‐tetrahydroxystilbene 2‐O‐β‐D ‐glucopyranosides. The last three known compounds were isolated from the fresh leaves of Agavaceae for the first time. The structures of the new compounds were elucidated by detailed spectroscopic analysis, including 1D‐ and 2D‐NMR experiments, and chemical techniques.  相似文献   

17.
The isolation and structure elucidation of two new oleanane‐type triterpene glycosides, 29‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29α)‐29‐(β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and its C(20)‐epimer, 30‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29β)‐29‐β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 2 ), and a novel nortriterpene glycoside, (17S)‐2α,18β,23‐trihydroxy‐3,19‐dioxo‐19(18→17)‐ abeo‐28‐norolean‐12‐en‐25‐oic acid β‐D ‐glucopyranosyl ester (=(1R,2S,4aS,4bR,6aR,7R,9R,10aS,10bS)‐3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11‐tetradecahydro‐1‐hydroxy‐7‐(hydroxymethyl)‐3′,4′,4a,4b,7‐pentamethyl‐2′,8‐ dioxospiro[chrysene‐2(1H),1′‐cyclopentane]‐10a‐carboxylic acid β‐D ‐glucopyranosyl ester; 3 ) from Phlomis viscosa (Lamiaceae) are reported. The structures of the compounds were asigned by means of spectroscopic (IR, 1D‐ and 2D‐NMR, and LC‐ESI‐MS) and chemical (acetylation) methods.  相似文献   

18.
Two new triterpenoid glycosides, together with two new ergostane glycosides, umbellatosides A–D ( 1 – 4 , resp.), have been isolated from the leaves of Hydrocotyle umbellata L. Their structures were established by 2D‐NMR spectroscopic techniques (1H,1H‐COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3β,22β‐dihydroxy‐3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucuronopyranosyl]olean‐12‐en‐28‐oic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 1 ), 3‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucuronopyranosyl]oleanolic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 2 ), (3β,11α,26)‐ergosta‐5,24(28)‐diene‐3,11,26‐triol 3‐O‐(β‐D ‐glucopyranosyl)‐11‐O‐(α‐L ‐rhamnopyranosyl)‐26‐Oβ‐D ‐glucopyranoside ( 3 ), and (3β,11α,21,26)‐ergosta‐5,24(28)‐diene‐3,11,21,26‐tetrol 3‐O‐(β‐D ‐glucopyranosyl)‐11‐O‐(α‐L ‐rhamnopyranosyl)‐26‐Oβ‐D ‐glucopyranoside ( 4 ).  相似文献   

19.
Four new flavonoid glycosides, 3‐O‐[α‐L ‐arabinopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl]‐7‐Oβ‐D ‐glucopyranosylkaempferol ( 1 ), 3‐O‐(α‐L ‐arabinopyranosyl‐(1→2)‐{4‐O‐[(E)‐caffeoyl]‐β‐D ‐galactopyranosyl})‐7‐Oβ‐D ‐glucopyranosylquercetin ( 2 ), 3‐O‐{2‐O‐[(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl}‐7‐Oβ‐D ‐glucopyranosylkaemperfol ( 3 ), and 3‐O‐{2‐O‐[(E)‐caffeoyl]‐α‐L ‐arabinopyranosyl‐(1→2)‐β‐D ‐galactopyranosyl}kaempferol ( 4 ), together with two known compounds were isolated from the aerial parts of Ranunculus chinensis Bge . The structures of the new glycosides were determined on the basis of spectroscopic analysis, including 1D‐ and 2D‐NMR, and ESI‐MS techniques, and chemical methods.  相似文献   

20.
A further phytochemical investigation on the whole plants of Ypsilandra thibetica yielded three new spirostane glycosides, named ypsilandrosides M–O ( 1 – 3 ). Their structures were established as (3β,11α,25R)‐3,11‐dihydroxyspirost‐5‐en‐12‐one 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐O‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 1 ), (3β,7β,25R)‐spirost‐5‐ene‐3,7‐diol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 2 ), and (3β,7α,25R)‐spirost‐5‐ene‐3,7,17‐triol 3‐{O‐α‐L ‐rhanmopyranosyl‐(1→4)‐Oα‐L ‐rhanmopyranosyl‐(1→4)‐O‐[α‐L ‐rhanmopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside} ( 3 ) by means of a combination of MS, 1D‐ and 2D‐NMR spectroscopic methods, and chemical degradation. Among them, compound 3 is the first pennogenin (=(3β,25R)‐spirost‐5‐ene‐3,17‐diol) saponin whose aglycone contains an OH group at C(7). Compounds 1 – 3 were evaluated for the inhibition of the growth of five tumor cell lines, but all of them proved to be inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号