首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 13C chemical shifts of the carbon atoms in dibenzodioxin, phenoxathiin, phenoxaselenin and phenoxatellurin were determined in CDCl3 solutions and assigned. The total (σ and π) charge densitites on the carbon atoms calculated by the CNDO/2 method without consideration of d-orbitals correlated well with the experimentally determined shifts. Rather good agreement was also found between experimental shifts and shifts calculated from 13C data for phenyl methyl chalcogenides on the assumption that a phenoxachalcogenin molecule can be assembled from C6H5O and C6H5X groups. Only the shifts of the carbon atoms bonded to the heavier chalcogen atoms show an upfield trend in the sequence O, S, Se, Te. All other shifts exhibit a downfield trend. These trends are rationalized in terms of the electronegativities, abilities to participate in π-interactions, and anisotropy effects of the chalcogen atoms.  相似文献   

2.
The C?O bond length and fC?O,C?O, the corresponding harmonic stretching force constant, are calculated ab initio using the 4-31G basis set (augmented by polarization functions on the sulfur and chlorine) with full geometry optimization for the monosubstituted carbonyl compounds RCHO, where R = H, CHO, CH?CH2, CO2H, CH?CHOH, OH, OC(?O)OH, OOH, S? H, Li, F, Cl, and NH2. Straight-line relationships are found in plots of ln[fC?O,C?O] vs. ln[rC?O] for the series of compounds in which carbon atoms and oxygen atoms are bonded directly to the carbonyl carbon, in accordance with the empirical expression f = C′/rn. The slopes and intercepts give n = 7.62 and 6.47, C′ = 62.6 and 48.6, for the lines with carbon and oxygen as the atom bonded directly to the carbonyl carbon, respectively. The point for formaldehyde lies very close to the C line, whereas the points for SH, Li, F, Cl, and NH2 lie closer to the O line.  相似文献   

3.
13C NMR spectra have been studied for the three series of allyliron derivatives: (i) C3HP5Fe(CO)3X (X = I, Br, Cl, ONO2, OCOCH3, OCOCF3); (ii) 2-RC3H4Fe(CO)3X (R = CH3, Br; X = I, Br, Cl, ONO2, OCOCF3), and (iii) 1-RC3H4Fe(CO)3X (R = CH3, C6H5; X = Br, Cl, OCOCF3). The spectra reveal the effect of the nature of the ligand X and substituent R on the chemical shifts of the allyl and carbonyl carbon atoms.  相似文献   

4.
According to the 1H, 13C, and 19F NMR data, fluoroalkyl-containing 1,2,3-trione 2-arylhydrazones in CDCl3 exist exclusively, while in (CD3)2CO preferentially, as isomers in which the acyl or aroyl group is involved in intramolecular hydrogen bond. The isomer structure was assigned on the basis of the chemical shifts of the carbonyl carbon atoms and fluorine atoms and carbon-fluorine spin-spin coupling constants J C-F. X-Ray diffraction data showed that 1,2,3-trione 2-arylhydrazones in crystal have the same structure as in CDCl3 solution. Quantum-chemical calculations were performed to rationalize predominant formation of 1,2,3-trione 2-arylhydrazone isomers with a free polyfluoroacyl group.  相似文献   

5.
Carbon-13 nuclear magnetic resonance (CMR) spectra of eleven aromatically substituted benzocaine hydrochloride anesthetics have been measured. Ester carbonyl chemical shifts correlate well with measured carbonyl stretching frequencies and substituent Taft σI parameter. Ring substituents show a large effect upon the para carbon CMR chemical shifts which correlate well with Hammett σ's, however no measurable effect on the CMR chemical shifts of the carbonyl bonded diethylaminoethylene portion of the molecule is noted. This evidence suggests that interaction of the polar carbonyl group or the aromatic π system may be important in explaining drug potency in in vivo systems by modifying the configuration of the anesthetic at the receptor site.  相似文献   

6.
29Si, 13C and 1H NMR spectra are reported for the series of linear permethylpolysilanes Me(SiMe2)nMe where n = 1 to 6, for the cyclic permethylpolysilanes (Me2Si)n where n = 5 to 8, and for a few related compounds. For linear polysilanes the 29Si and 13C chemical shifts can be accurately calculated from simple additivity relationships based on the number of silicon atoms in α, β, γ and δ positions. Adjacent (α) silicon atoms lead to upfield shifts in the 29Si and 13C resonances, whereas more remote silicon atoms lead to downfield shifts. The 29Si chemical shifts of the polysilane chains are linearly related to the 13C shifts of the carbon atoms attached to the silicon. The 29Si and 13C resonances of the cyclic silanes deviate from this relationship. Ring current effects arising from σ delocalization are suggested as an explanation for the deviations. Proton-coupled 29Si NMR spectra are reported for Me3SiSiMe3 and for (Me2Si)n, n = 5 to 7.  相似文献   

7.
The 19F substituent chemical shifts (SCS) of a series of para-phenylacetyl fluorides (X? Ph? CH2? COF) are reported and compared with the related benzoyl fluoride series (X? Ph? COF). A dual substituent parameter analysis of the results for the new series shows that both inductive and resonance effects are reduced by one third when compared with the benzoyl fluorides. 13C shifts for the side chain carbonyl were also measured and found to follow a reversed trend in substituent effects, consistent with a pi polarization mechanism. SCS values for the fluorine and its adjacent carbon are not directly related. Ab initio (STO-3G) calculations of the carbon and fluorine electron density for this series have been compared with the appropriate SCS values. From the electron densities and the observation that the fluorine SCS values follow a normal direction, whilst those for electron densities and the observation that the fluorine SCS values follow a normal direction, whilst those for the adjacent carbon are reversed, it is concluded that fluorine SCS values (and Δqπ values) result from polarization of the C? F pi bond and do not merely monitor changes in electron density of the adjacent carbon.  相似文献   

8.
E. Breitmaier  W. Voelter 《Tetrahedron》1974,30(21):3941-3943
The 13C chemical shifts of purines substituted in the 6 position are reported. Signals are assigned on the basis of general chemical shift rules and by proton “off-resonance” decoupling. Substituent effects (Z6i) of the substituent X in the 6 position of purine on the 13C chemical shifts of purine ring carbon atoms are determined. A linear correlation exists between the substituent effects of X on C-6 (Z66) and Pauling's electronegativity values Ex of the substituent X.  相似文献   

9.
The 13C NMR spectra of π-arenechromium complexes XC6H5Cr(CO)2L (where I, L  CO; II, L  PPh3; X  aliphatic and aromatic substituents) were investigated. The effect of the nature of the substituent X on the chemical shifts of the carbon atoms of the aromatic ring in these complexes was analyzed.It was established that a correlation exists between δ(13C) and σR (Taft's constant) in complexes I, not only for C(4) nuclei but also for C(3) metal atoms, the difference being that the slopes of the corresponding curves are opposite.  相似文献   

10.
1H and 13C NMR spectra of 8-hydroxyquinoline (oxine) and its 5-Me, 5-F, 5-Cl, 5-Br and 5-NO2 derivatives have been studied in DMSO-d6 solution. The 1H and 13C chemical shifts and proton–proton, proton–fluorine, carbon–proton and carbon–fluorine coupling constants have been determined. The 1H and 13C chemical shifts have been correlated with the charge densities on the hydrogen and carbon atoms calculated by the CNDO/2 method. The correlation of the 1H and 13C chemical shifts with the total charge densities on the carbon atoms is approximately linear (rH2 = 0.85, rC2 = 0.84). The proton in peri position to the nitro group in 5-NO2-oxine is an exception.  相似文献   

11.
An NMR study of ketones 5–12 was undertaken to gain insight into the low electrophilicity of the carbonyl moiety of butenones 9–11. Initial IR studies on compounds 9–12 indicated that there is relatively strong double bond character (and hence low electrophilicity) in the carbonyl of saturated and unsaturated cyclobutyl ketones. The 13C chemical shifts confirm that the carbonyl moiety is highly conjugated with the fused benzene ring in 9, and with the olefinic linkage in 10 and 11. Partial positive charge is distributed away from the carbonyl carbon, which is also expected to lower the electrophilicity of the carbonyl carbon atoms of 9–11. One‐bond carbon–proton coupling constants (1JCH) depend directly on carbon hybridization. In the four‐membered ring ketones 9–12 the experimental values are larger than in cyclobutane, probably as a result of the additional strain of the extra trigonal centers in the ring. A similar trend is seen in the case of the olefinic CH in 10 and 11 (ca 175 Hz), for which the coupling constant is larger than for the corresponding carbon in cyclobutene. 1JCC values between the ring carbon atoms of the cyclobutenones are some 20% lower than in the models—a bigger difference than in cyclobutanes, again indicative of the increased ring strain. The very low 42.4 Hz coupling between C‐1 and C‐2 in 9 might well indicate a measure of bond localization. 2JCC and 3JCC values are also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Complete demethylation of Cp2Ti(CH3)2 in dichloromethane with 2 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7), and [η5-(C5H4COOH)]W(CO)3CH3 (8); gives Cp2Ti{[OC(O)C5H4]Cr(CO)2NO}2 (13), Cp2Ti{[OC(O)C5H4]Cr(NO)2Cl}2 (14), Cp2Ti{[OC(O)C5H4]Cr(NO)2I}2 (15),and Cp2Ti{[OC(O)C5H4]W(CO)3CH3}2 (16), respectively. The chemical shifts of C(2)-C(5) carbon atoms of compounds 13-15 have been assigned using two-dimensional HetCOR NMR spectroscopy. The assigned chemical shifts were compared with the NMR data of their analogues of ferrocene, and the opposite correlation on the assignments was observed for cynichrodenoyl moieties.  相似文献   

13.
The C? H proton NMR spectra of the twenty conceivable methyl and ethyl substituted hydrazines are presented and analyzed with respect to effects on chemical shifts of the C? H protons caused by replacement of hydrogen by methyl and ethyl groups on the C? N? N? C chain. Thirteen different methyl substituent effects and six different ethyl substituent effects are identified and evaluated. Most of the effects are shielding and in accordance with an electron-releasing inductive effect of alkyl groups. A deshielding effect (the ‘C? C bond effect’) is observed when a methyl group replaces the hydrogen on the carbon bearing the hydrogen in focus and primary hydrogen on the carbon bearing the hydrogen in focus and primary hydrogens become secondary, as observed in other systems. On the basis of their effects on the chemical shifts of methyl protons in CH3X, eighteen different hydrazyl groups (× = ? NR1NR2R3) fall into three classes: I (R1 = H; R2, R3 = H or alkyl); II (R1 = alkyl; R2 and/or R3 = H); III (R1, R2 and R3 = alkyl), with slightly different electronegativities: 2·94, 2·83 and 2·74, respectively.  相似文献   

14.
A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta‐chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed 1H and 13C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy‐minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the ‘cheap’ DFT B3LYP/6‐31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Δδ values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (? S? , ? SO? , ? SO2? ). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
C-13 and F-19 NMR spectra of seventeen para-substituted fluorobenzenes were measured and the chemical shifts as well as coupling constants with respect to substituents were analysed. The chemical shifts of the fluorine, the C1 and the C2 atoms were found to depend on the total electron densities. In the case of the C3 atom, the chemical shifts seem to depend on π-electron densities rather than the total electron densities. The present calculations also indicate that the chemical shift of the C4 atom depends mainly on σ-electron densities due to the inductive effects of substituents. The strongest factor influencing the coupling constant, nJ(C? F), is also considered to be the π-electron densities on the carbon atoms. In the case of the direct couplings, 1J(C? F), the π-bond orders are important.  相似文献   

16.
The reaction mechanism for difluoromethylation of lithium enolates with fluoroform was analyzed computationally (DFT calculations with the artificial force induced reaction (AFIR) method and solvation model based on density (SMD) solvation model (THF)), showing an SN2‐type carbon–carbon bond formation; the “bimetallic” lithium enolate and lithium trifluoromethyl carbenoid exert the C?F bond “dual” activation, in contrast to the monometallic butterfly‐shaped carbenoid in the Simmons–Smith reaction. Lithium enolates, generated by the reaction of 2 equiv. of lithium hexamethyldisilazide (rather than 1 or 3 equiv.) with the cheap difluoromethylating species fluoroform, are the most useful alkali metal intermediates for the synthesis of pharmaceutically important α‐difluoromethylated carbonyl products.  相似文献   

17.
(1,5-Cyclooctadiene) (4-substituted pyridinium 2-pyridylcarbonylmethylide)- rhodium(I) perchlorates, [Rh(COD)(C5H4NC(O)C?H+C5H4X-4)]ClO4 [COD = 1,5-cyclooctadiene; X = CH3C(O), CH3OC(O), C6H5, CH3, and H], have been prepared. They are shown to have the geometry with coordination by the pyridyl nitrogen and carbonyl oxygen atoms of the ylide ligands and to exhibit intramolecular rearrangement of coordinated COD in chloroform, methanol, and dimethyl sulphoxide based on IR and 1H NMR spectroscopies. Although the ylides have exhibited fluorescence bands due to an intramolecular charge-transfer transition and phosphorescence bands due to a carbonyl 3(n*) transition, the complexes have given emission bands due to the metal-to-ylide ligand charge-transfer transition. A.single crystal X-ray crystal structure has been determined for [Rh(COD)(C5H4NC(O)C?H+C5H4CH3-4)]ClO4. The crystals are monoclinic, space group P21/n with cell dimensions a = 14.887(3), b = 20.274(4), c = 6.966(1) Å, β = 96.13(1)°, and Z = 4. The structure has been refined by a block-diagonal least-squares method to final R = 0.060 for 2997 independent reflections with |Fo| > 3σ(F). The ylide carbon-pyridinium nitrogen bond distance is 1.420(10) Å. The bonded distances from rhodium to the midpoints of the double bonds of COD are 1.982(11) and 2.014(12) Å.  相似文献   

18.
Density functional theory (DFT) calculations are performed for a representative set of low-energy structures of C60-n Si n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30) to investigate the effect of silicon doping on the electron structure of fullerene. The results show that chemical shielding (CS) parameters are so sensitive to the structural distortion made by outwardly relaxing silicon doped atoms from the fullerene surface which results in puckered Si-doped rings. As a result, the chemical shifts of the nearest carbon sites of silicon atoms considerably shift to downfield. Our survey shows that those first neighbors of silicon atoms which have minor 13C chemical shift belong to normal (un-puckered) rings. Meanwhile, the chemical shielding anisotropy (Δσ) parameter detects the effects of dopant so that Δσ values of the carbon atoms which are contributed to the Si–C bond are mainly larger than the others. Compensation between diatropic and paratropic ring currents lead to less negative NICS values at cage centers of Si-doped fullerenes than that of C60 except C58Si2-b and C54Si6-b in which more negative NICS values may be attributed to more spherical geometries of their carbon cages.  相似文献   

19.
The 13C resonance of the carbonyl carbon in a single crystal of benzophenone was studied by Fourier transform NMR at room temperature. Rotation patterns about the three cyrstallographic axes yielded the orientations of the major axis systems of the chemical shift tensor σ relative to the crystallographic axes for the four molecules in the unit cell. The principal elements of σ were found to be: σxx = −79 ± 4, σyy = −36 ± 4, and σzz = +94 ± 4 ppm , relative to CS2. The Z axis of the nearly axially symmetric σ tensor was found to be perpendicular to the plane spanned by the carbonyl carbon and the carbon and oxygen atoms directly bound to it.  相似文献   

20.
Hydrogen and carbon chemical shifts and H? H and C? H couplings are reported for six aminoquinolines and six aminoisoquinolines in DMSO-d6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号