首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The multicenter bonding pattern of the intriguing hexa‐, hepta‐, and octacoordinate boron wheel series (e.g., , , , and SiB8 as well as the experimentally detected isomer) is revised using the block‐localized wave function analyzed by the localized orbital locator (BLW‐LOL). The more general implementation of BLW combined with the LOL scalar field is not restricted to the analysis of the out‐of‐plane π‐system but can also provide an intuitive picture of the σ‐radial delocalization and of the role of the central atom. The results confirm the presence of a π‐ring current pattern similar to that of benzene. In addition, the LOLπ isosurfaces along with the maximum intensity in the  ΔLOL profiles located above and below the ring suggest that the central atom plays a minor role in the π‐delocalized bonding pattern. Finally, the analysis of the σ‐framework in these boron wheels is in line with a moderated inner cyclic rather than disk‐type delocalization. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
The “atoms in molecules” structures of 225 unsubstituted hydrocarbons are derived from both the optimized and the promolecule electron densities. A comparative analysis demonstrates that the molecular graphs derived from these two types of electron densities at the same geometry are equivalent for almost 90 % of the hydrocarbons containing the same number and types of critical points. For the remaining 10 % of molecules, it is demonstrated that by inducing small perturbations, through the variation of the used basis set or slight changes in the used geometry, the emerging molecular graphs from both densities are also equivalent. Interestingly, the (3, ?1) critical point between two “non‐bonded” hydrogen atoms, which triggered “H?H bonding” controversy is also observed in the promolecule densities of certain hydrocarbons. Evidently, the topology of the electron density is not dictated by chemical bonds or strong interactions and deformations induced by the interactions of atoms in molecules have a quite marginal role, virtually null, in shaping the general traits of the topology of molecular electron densities of the studied hydrocarbons, whereas the key factor is the underlying atomic densities.  相似文献   

4.
Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014 , 53, 13706–13709; Angew. Chem. 2014, 126, 13925–13929 ] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear‐electronic orbital non‐Born–Oppenheimer procedure, the nuclear configuration of the muon‐substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the “atoms in molecules” (AIM) structure of the muon‐substituted malonaldehyde and the AIM structure of the stable and the transition‐state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon‐substituted malonaldehyde to the transition state.  相似文献   

5.
Currently, bonding analysis of molecules based on the Quantum Theory of Atoms in Molecules (QTAIM) is popular; however, “misinterpretations” of the QTAIM analysis are also very frequent. In this contribution the chemical relevance of the bond path as one of the key topological entities emerging from the QTAIM’s topological analysis of the one‐electron density is reconsidered. The role of nuclear vibrations on the topological analysis is investigated demonstrating that the bond paths are not indicators of chemical bonds. Also, it is argued that the detection of the bond paths is not necessary for the “interaction” to be present between two atoms in a molecule. The conceptual disentanglement of chemical bonds/interactions from the bonds paths, which are alternatively termed “line paths” in this contribution, dismisses many superficial inconsistencies. Such inconsistencies emerge from the presence/absence of the line paths in places of a molecule in which chemical intuition or alternative bonding analysis does not support the presence/absence of a chemical bond. Moreover, computational QTAIM studies have been performed on some “problematic” molecules, which were considered previously by other authors, and the role of nuclear vibrations on presence/absence of the line paths is studied demonstrating that a bonding pattern consistent with other theoretical schemes appears after a careful QTAIM analysis and a new “interpretation” of data is performed.  相似文献   

6.
硼原子的键合形式对硼酸盐晶体非线性光学行为的影响   总被引:2,自引:0,他引:2  
在几种具有典型复杂结构的硼酸盐晶体中 ,从硼原子的键合形式出发讨论了不同键合情况下的B—O键对硼酸盐晶体的非线性光学行为的具体影响。结果表明 ,晶体中B—O键的键合形式是制约硼酸盐晶体非线性光学行为的重要因素。  相似文献   

7.
VB and molecular orbital (MO) models are normally distinguished by the fact the first looks at molecules as a collection of atoms held together by chemical bonds while the latter adopts the view that each molecule should be regarded as an independent entity built up of electrons and nuclei and characterized by its molecular structure. Nevertheless, there is a much more fundamental difference between these two models which is only revealed when the symmetries of the many-electron Hamiltonian are fully taken into account: while the VB and MO wave functions exhibit the point-group symmetry, whenever present in the many-electron Hamiltonian, only VB wave functions exhibit the permutation symmetry, which is always present in the many-electron Hamiltonian. Practically all the conflicts among the practitioners of the two models can be traced down to the lack of permutation symmetry in the MO wave functions. Moreover, when examined from the permutation group perspective, it becomes clear that the concepts introduced by Pauling to deal with molecules can be equally applied to the study of the atomic structure. In other words, as strange as it may sound, VB can be extended to the study of atoms and, therefore, is a much more general model than MO.  相似文献   

8.
Quantum chemical calculations of the alkaline-earth oxides, imides and dihydrides of the alkaline-earth atoms (Ae=Be, Mg, Ca, Sr, Ba) and the calcium cluster Ca6H9[N(SiMe3)2]3(pmdta)3 (pmdta=N,N,N′,N′′,N′′-pentamethyldiethylenetriamine) have been carried out by using density functional theory. Analysis of the electronic structures by charge and energy partitioning methods suggests that the valence orbitals of the lighter atoms Be and Mg are the (n)s and (n)p orbitals. In contrast, the valence orbitals of the heavier atoms Ca, Sr and Ba comprise the (n)s and (n−1)d orbitals. The alkaline-earth metals Be and Mg build covalent bonds like typical main-group elements, whereas Ca, Sr and Ba covalently bind like transition metals. The results not only shed new light on the covalent bonds of the heavier alkaline-earth metals, but are also very important for understanding and designing experimental studies.  相似文献   

9.
10.
Modeling of the temperature‐dependent liquid entropy of ionic liquids (ILs) with great accuracy using COSMO‐RS is demonstrated. The minimum structures of eight IL ion pairs are investigated and the entropy, calculated from ion pairs, is found to differ on average only 2 % from the available experimental values (119 data points). For calculations with single ions, the average error amounts to 2.6 % and stronger‐coordinating ions tend to give higher deviations. Additionally, the first parameterization of the standard liquid entropy for ILs is presented in the context of traditional volume‐based thermodynamics (Sl0=1.585 kJ mol?1 K?1 nm?3?rm3+14.09 J mol?1 K?1), which sheds light on the statistical treatment of ionic interactions. The findings provide the first direct access to accurate predictions of liquid entropies of ILs, which are tedious and time‐consuming to measure.  相似文献   

11.
A new partitioning scheme for the electron density of a many-electron wavefunction into single electron densities is proposed. These densities are based on the most probable arrangement of the electrons in an atom or molecule. Therefore, they contain information about the electron-electron interaction and, most notably, the Fermi hole due to the antisymmetry of the many-electron wavefunction. The single electron densities overlap and can be combined to electron pair distributions close to the qualitative electron pairs that represent, for instance, the basis of the valence shell electron pair repulsion model. Single electron analyses are presented for the water, ethane, and ethene molecules. The effect of electron correlation on the single electron and pair densities is investigated for the water molecule.  相似文献   

12.
Electron diffraction offers advantages over X‐ray based methods for crystal structure determination because it can be applied to sub‐micron sized crystallites, and picogram quantities of material. For molecular organic species, however, crystal structure determination with electron diffraction is hindered by rapid crystal deterioration in the electron beam, limiting the amount of diffraction data that can be collected, and by the effect of dynamical scattering on reflection intensities. Automated electron diffraction tomography provides one possible solution. We demonstrate here, however, an alternative approach in which a set of putative crystal structures of the compound of interest is generated by crystal structure prediction methods and electron diffraction is used to determine which of these putative structures is experimentally observed. This approach enables the advantages of electron diffraction to be exploited, while avoiding the need to obtain large amounts of diffraction data or accurate reflection intensities. We demonstrate the application of the methodology to the pharmaceutical compounds paracetamol, scyllo‐inositol and theophylline.  相似文献   

13.
From time to time, ill‐defined concepts leads to never‐ending discussions in the chemical literature. “Is there a quadruple bond in the C2 molecule? What about the boron–boron triple bond? Can we uniquely define concepts like aromaticity or bond order at all?” With this tutorial review I would like to point out that some of the contemporary publications in chemistry are characterized by a confusion of ideas and concepts, and in part ill definitions. And, that exactly those ill‐defined concepts lead to never ending controversies in the literature. Examples of well‐ and ill‐defined concepts in chemistry are discussed.  相似文献   

14.
Quasi‐relativistic Douglas–Kroll CASPT2 calculations are reported for the title molecules, mainly to provide primary data for a fit of double‐bond covalent radii. Indeed, a well‐developed σ2π2 double bond is identified in all cases. For Eu and Yb, however, it is an excited state. The main valence orbitals of all Ln ions are 6s and 5d. In the σ bonds, more 5d than 6s character is found at the Ln. The Ln?C bond lengths show a systematic lanthanide contraction of 13 pm from La to Lu. An agostic symmetry breaking is demonstrated for Ce but its effect on the Ln? C length is small.  相似文献   

15.
A new approach to crystal structure determination, combining crystal structure prediction and transmission electron microscopy, was used to identify a potential new crystal phase of the pharmaceutical compound theophylline. The crystal structure was determined despite the new polymorph occurring as a minor component in a mixture with Form II of theophylline, at a concentration below the limits of detection of analytical methods routinely used for pharmaceutical characterisation. Detection and characterisation of crystallites of this new form were achieved with transmission electron microscopy, exploiting the combination of high magnification imaging and electron diffraction measurements. A plausible crystal structure was identified by indexing experimental electron‐diffraction patterns from a single crystallite of the new polymorph against a reference set of putative crystal structures of theophylline generated by global lattice energy minimisation calculations.  相似文献   

16.
Understanding enzyme catalysis and developing ability to control of it are two great challenges in biochemistry. A few successful examples of computational‐based enzyme design have proved the fantastic potential of computational approaches in this field, however, relatively modest rate enhancements have been reported and the further development of complementary methods is still required. Herein we propose a conceptually simple scheme to identify the specific role that each residue plays in catalysis. The scheme is based on a breakdown of the total catalytic effect into contributions of individual protein residues, which are further decomposed into chemically interpretable components by using valence bond theory. The scheme is shown to shed light on the origin of catalysis in wild‐type haloalkane dehalogenase (wt‐DhlA) and its mutants. Furthermore, the understanding gained through our scheme is shown to have great potential in facilitating the selection of non‐optimal sites for catalysis and suggesting effective mutations to enhance the enzymatic rate.  相似文献   

17.
介绍了一个面向高年级本科生的研究型计算化学实验。主族元素AB4型含氧酸根是无机和结构化学理论课程中讨论化学键类型的例子,然而其结果却存在争议。本实验利用常用量子化学软件,通过计算化学方法分析化学成键,验证猜测,并得出结论。旨在通过本实验,锻炼学生对量子化学计算方法的运用,进而加深对化学基础知识的理解。  相似文献   

18.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A series of bromoalkanes was investigated by means of electron transmission spectroscopy in the gas phase. Experimental values of vertical electron affinities associated with occupation of the LUMO by an incoming electron were assigned using ab initio quantum chemical calculations. The predicted vertical electron affinity values differ from measured ones by at most ±0.2 eV. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1222–1224, June, 2007.  相似文献   

20.
TheElectronicStructuresandChemicalBondingofSomeDinuclearandTrinuclearLow-valenceMolybdenumComplexesContainingThiolateBridgesH...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号