共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting ofwarm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schrodinger equationincluding one additional term that comes from the effect of relativistic electron beam is derived. It is found that theinclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could notadmit any stationary soliton waves. 相似文献
2.
具有高阶色散项的交叉相位调制不稳定性分析 总被引:14,自引:1,他引:14
以包含了三、四阶色散项的耦合非线性薛定谔方程为基础,重点研究了三、四阶色散对交叉相位调制不稳定性的影响。结果表明:三阶色散对调制不稳定性不起作用;当满足一定条件时,由于四阶色散的影响,不仅在光纤的反常色散区,而且在光纤的正常色散区,交叉相位所致的调制不稳定性均发生在两个频谱区。当光纤各参量及两束入射光波功率一定时,光纤反常色散区第一区域的增益谱要比正常色散区第一区域的增益谱宽;同时,反常色散区第二区域的增益谱比正常色散区第二区域的增益谱更靠近零点;进一步对比反、正常色散区的这两个频谱区,发现两个频谱区的范围有确定的对应关系。 相似文献
3.
We obtain analytically the static states and corresponding collective-excitation spectra of a quasi-onedimensional spin-1 condensate modulated by a long-wavelength optical lattice in the weak lattice limit. It is demonstrated that both ferromagnetic and antiferromagnetic condensates may exhibit dynamical instability, which agree with the results with numerical simulation. In the homogeneous limit, our results reduce to the previous results for homogeneous spinor condensates, i.e., dynamical instability can occur only for ferromagnetic interaction and an antiferromagnetic condensate is always dynamically stable. 相似文献
4.
5.
A. T. Grecu D. Grecu Anca Visinescu 《International Journal of Theoretical Physics》2007,46(5):1190-1204
The modulational instability (MI) in the class of NLS equations is discussed using a statistical approach (SAMI). A kinetic
equation for the two-point correlation function is studied in a linear approximation, and an integral stability equation is
found. The modulational instability is associated with a positive imaginary part of the frequency. The integral equation is
solved for different types of initial distributions (δ-function, Lorentzian) and the results are compared with those obtained
using a deterministic approach (DAMI). The differences between MI of the normal NLS equation and derivative NLS equations
is emphasized.
PACS: 05.45. 相似文献
6.
零色散附近的交叉相位调制不稳定性分析 总被引:1,自引:0,他引:1
以三、四阶色散项的耦合非线性薛定谔方程为基础,考虑光纤损耗及高阶色散,研究了双光束在零色散附近的交叉相位调制不稳定性.理论上导出描述交叉相位调制不稳定性的色散方程,并进行数值模拟计算.结果表明:由于四阶色散的影响,在光纤的正常、反常色散区,交叉相位调制不稳定性均发生在两个频谱区.如光脉冲工作在最小群速度色散附近时,四阶色散对光纤的交叉相位调制不稳定性将起决定性作用,可使增益谱出现一个新的峰值.光纤损耗使增益的谱宽变窄.对给定的传输距离,随着光纤向零色散附近靠近,两个频谱区谱宽增加直到相互重叠.数值分析了两光波有差别时的交叉相位调制不稳定性. 相似文献
7.
The modulational instability in one-dimensional molecule chain of interacting Frenkel excitons is investigated. The formation of localized modes via modulational instability is predicted and the previous numerical and analytical results are explained. The Peierls-Nabarro (PN) potential barrier for the localized modes is also discussed. 相似文献
8.
从包含高阶色散的广义非线性薛定谔方程出发,得到了色散缓变光纤中交叉相位调制不稳定增益谱,研究了增益谱随入射功率及光纤纵向色散参量的变化关系.结果表明:由于四阶色散的影响,在色散缓变光纤的正、反常色散区,交叉相位调制不稳定均发生在两个频谱区.反常色散区两频谱区宽度均比正常色散区宽,且反常色散区第二频谱区更靠近零点,说明色散缓变光纤中交叉相位调制不稳定更容易发生在反常色散区.增益谱宽都随两入射光波功率比值的增加而增大.色散缓变光纤中交叉相位调制不稳定增益谱宽比常规光纤的宽,且随着光纤纵向色散参量μ的增大色散缓变光纤中交叉相位调制不稳定越来越明显. 相似文献
9.
Using the standard reductive perturbation technique,a nonlinear Schroedinger equation is derived to study the modulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma.It is found that the inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the soliton stuctures.The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties are inestigated in detail. 相似文献
10.
We investigate modulational instability (MI) of a coupled two-component Bose-Einstein condensates in a rotating ring trap. The excitation spectrum and the MI condition of the system are presented analytically. We find that the coupling between the two components strongly modifies the MI condition, and the MI condition is phase-dependent. Furthermore, we discuss the effect of MI on both density excitation and spin excitation. If the inter- and intra-component interaction strengths are all equal, the MI causes density excitation but not spin excitation, and if the inter- and intra-component interaction strengths are different, the MI causes both density excitation and spin excitation. Our results provide a promising approach for controlling the stability and excitation of a rotating two-component Bose-Einstein condensates by modulating its coupling strength and interaction strength. 相似文献
11.
Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions 下载免费PDF全文
The nonlinear propagation of quantum ion acoustic wave(QIAW) is investigated in a four-component plasma composed of warm classical positive ions and negative ions,as well as inertialess relativistically degenerate electrons and positrons.A nonlinear Schrodinger equation is derived by using the reductive perturbation method,which governs the dynamics of QIAW packets.The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf.The results exhibit that both in the weakly relativistic limit and in the ultrarelativistic limit,the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively,and on the relativistically degenerate effect as well. 相似文献
12.
M.K. Islam A.A. Noman J. Akter N.A. Chowdhury A. Mannan T.S. Roy M. Salahuddin A.A. Mamun 《等离子体物理论文集》2021,61(5):e202000214
The modulational instability (MI) criteria of dust-ion-acoustic (DIA) waves (DIAWs) have been investigated in a four-component pair-ion plasma having inertial pair ions, inertialess non-thermal non-extensive electrons, and immobile negatively charged massive dust grains. A nonlinear Schrödinger equation (NLSE) is derived by using reductive perturbation method. The nonlinear and dispersive coefficients of the NLSE can predict the modulationally stable and unstable parametric regimes of DIAWs and associated first and second-order DIA rogue waves (DIARWs). The MI growth rate and the configuration of the DIARWs are examined, and it is found that the MI growth rate increases (decreases) with increasing the number density of the negatively charged dust grains in the presence (absence) of the negative ions. It is also observed that the amplitude and width of the DIARWs increase (decrease) with the negative (positive) ion mass. The implications of the results to laboratory and space plasmas are briefly discussed. 相似文献
13.
Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons 下载免费PDF全文
An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativistic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. Up to the second order of the perturbation theory, a nonlinear Schr?dinger type (NST) equation for the complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-de Varies equation, obtained by a reductive perturbation theory, is satisfied. 相似文献
14.
This paper analytically investigates the nonlinear behaviour of transverse plasmons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov--Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas. 相似文献
15.
Modulational instability of incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity 下载免费PDF全文
The modulational instability of two incoherently coupled beams in
azobenzene-containing polymer with photoisomerization nonlinearity
is investigated analytically and numerically. Our results show that
as a precursor to spatial optical soliton formation, modulational
instability can be adjusted and controlled by the wavelength
combinations of the signal and background beams. We also discuss the
dependences of strength of modulational instability on intensities
of two signal beams and background beam. These findings make it
possible to predict the formation of incoherently coupled soliton
pairs in azobenzene-containing polymer. 相似文献
16.
The basic properties of nonlinear ion-acoustic (IA) waves (IAWs), particularly finite amplitude IA rogue waves (IARWs) in a plasma medium (containing pair ions, iso-thermal positrons, and non-thermal electrons) are theoretically investigated by deriving the nonlinear Schr?dinger equation (NLSE). The criteria for the modulational instability of IAWs, and the basic features of finite amplitude IARWs are identified. The modulationally stable and unstable regions are determined by the sign of the ratio of the dispersive coefficient to the nonlinear rcoefficient of NLSE. The latter is analyzed to obtain the region for the existence of the IARWs, which corresponds to the unstable region. The shape of the profile of the rogue waves depends on the non-thermal parameter$\alpha$ and the ratio of electron temperature to positron temperature. It is found that the increase in the value of the non-thermal parameter enhances both the amplitude and width of IARWs, and that the enhancement of electron (positron) temperature reduces (enhances) the amplitude and width of IARWs. It is worth to mention that our present investigation may be useful for understanding the salient features of IARWs in space (viz., upper region of Titan's atmosphere, cometary comae, and Earth's ionosphere, etc.) and laboratory (viz., plasma process ingreactor and neutral beam sources, etc.) plasmas. 相似文献
17.
18.
19.
M. M. Haider 《等离子体物理论文集》2013,53(3):234-244
A theoretical investigation has been made on obliquely propagating ion‐acoustic (IA) solitary structures in a three components magneto‐plasma containing cold inertial ions, Boltzmann distributed positrons, and hot non‐thermal electrons. The Zakharov‐Kuznetsov equation has been derived by the reductive perturbation method, and its solitary wave solution has been analyzed. Multi‐dimensional instability has also studied by the small‐k (long wave‐length plane wave) perturbation expansion technique, which is found to exist in such a plasma. The effects of the external magnetic field, nonthermal electrons, obliqueness and temperature ratio have significantly modified the basic properties of small but finite‐amplitude IA solitary waves, such as amplitude, width, instability criterion and the growth rate. The present investigation contributes to the physics of the nonlinear IA waves in space and laboratory electron‐positron‐ion magneto‐plasmas in which wave damping produces an electron tail. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
In this paper, the coupling instability of warm relativistic electron beam (WREB) propagating through the ion channel guiding is investigated in detail. Obtaining the equilibrium state of the system by considering the self-electric and azimuthal magnetic field, the fluid-Maxwell equations as well as linear perturbation theory are employed to derive the dispersion relation of the excited modes in the system. Numerical analysis of the obtained dispersion relation shows that the electromagnetic (EM) instability can be induced nearly the center of the beam through coupling between the fast electron plasma wave (FEPW), originated from the longitudinal oscillation of WREB, and fast forward electromagnetic wave (FFEW). In this sense, growing the perturbation amplitude occurs due to transport the kinetic energy of WREB to the EM wave at the specific frequency range, where the phase velocity of FEPW and FFEW is coincided. The results of the present investigation will greatly contribute to the understanding of the stability of the warm relativistic electron beam in laboratory experiments, such as in free electron laser experiments, where the ion-channel guiding is used to confine the electrons against the self-repulsive forces generated by the beam itself. 相似文献