首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Star‐shaped rigid molecules that comprise a 1,3,5‐trisubstitued benzene core and three oligoaryleneethynylene arms have great potential application in organic light‐emitting devices (OLEDs). Their optical and electronic properties are tuned by the star‐shaped molecular size. To reveal the relationship between the properties and structures, we perform a systemic investigation for these organic molecules. The ground and excited state molecules are studied using density functional theory (DFT), the ab initio HF, and the single excitation configuration interaction (CIS), respectively. And the electronic absorption and emission spectra are investigated with time‐dependent density functional theory (TDDFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The results show that the HOMOs, LUMOs, energy gaps, ionization potentials (IP), electron affinities (EA), absorption and emission spectra are controlled by the star‐shaped molecular size, which favor the hole and electron injection into OLEDs. With increasing the molecular conjugated length, the absorption and emission spectra exhibit red shifts to some extent and are in good agreement with the experimental ones. Also, the calculated emission spectra range from 330 to 440 nm. All the calculated show that the star‐shaped molecules are promising as blue light emitting materials  相似文献   

2.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

3.
It has been proved that triphenylamine (TPA) derivatives can be excellent candidates for hole‐transporting materials in organic light‐emitting diodes (OLEDs). To improve on the thermal and morphological stability, a fully diarymethylene‐bridged TPA derivative (FATPA) which has been proven to enhance electroluminescent (EL) efficiency was synthesized. On the basis of FATPA, two series of novel bridged TPA derivatives have been designed by using diarylmethylene (Series A) or dimethyfluorene (Series B) as the linkage between the ortho‐positions of the phenyl rings in this work (see Fig. 1 ). To reveal the relationships between electronic structures and photophysical properties of these novel functional materials, an in‐depth theoretical investigation was elaborated via quantum chemical calculations using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods. In addition, the feasibility of using these bridged TPA derivatives as host in the device of ITO/MoO3/NPB/mCP/host:Ir(ppy)3/TAZ/LiF/Al was also evaluated, which including the discussion to their energy levels match with adjacent layers and energy transfer from host to guest. These calculated results show that photophysical properties can be easily tuned by the introduction of various substituent groups into the bridged TPA derivatives, such as the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), the energies difference between the HOMOs and LUMOs (ΔH‐L), the lowest singlet (ES) and triplet (ET) excitation energies, ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ) and the absorption and emission spectra, indicating that these bridged TPA derivatives have great potential applications for OLEDs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

4.
The purpose of this work is to provide an in‐depth interpretation of the optical and electronic properties of a series of aromatic oligomers and polymers, including [N‐(4‐(5‐(3‐(1,3,4‐oxadiazol‐2,5‐ylene)phenyl)‐1,3,4‐oxadiazol‐2‐ylene)phenyl)‐N‐(1,4‐phenylene)amine]n (NPPP)n and [N‐(4‐(5‐(3‐(1,3,4‐oxadiazol‐2,5‐ylene)phenyl)‐1,3,4‐oxa‐diazol‐2‐ylene)phenyl)‐N‐(1,4‐phenylene)naphthalene‐1‐amine]n (NPPN)n (n=1–4). These polymers and oligomers show great potential for application to organic light‐emitting diodes (OLEDs) as efficient blue emitters due to the tuning of the optical and electronic properties. The geometric and electronic structures of the oligomers in the ground state were investigated using density functional theory (DFT) and the ab initio HF, whereas the lowest singlet excited state of NPPP1 was optimized with ab initio configuration interaction singles (CIS). To assign the absorption and emission peaks observed in the experiment, the absorption and emission spectra of the ground and lowest singlet excited states were calculated with time‐dependent DFT (TD‐DFT) and Zerner's independent neglect of differential overlap (ZINDO). All DFT calculations were performed using the B3LYP functional and the 6‐31G basis set. The results show that the HOMO, LUMO, energy gaps, ionization potentials, and electron affinities for these polymers are affected by increasing the conjugated chain, which favors the hole and electron injection into OLED. The trend of the variation of ΔH‐L and the lowest excitation energies with 1/n, and the electronic structure and optical properties of these polymers were extrapolated and analyzed. The absorption spectra exhibit red shifts to some extent [the absorption spectra: 359.47 (NPPP1)<370.84 (NPPP2)<373.84 (NPPP3)<375.33 nm (NPPP4); 361.14 (NPPN1)<370.34 (NPPN2)<373.39 (NPPN3)<374.62 nm (NPPN4)]. Our calculated spectra agree well with the experimental findings where available, showing small but systematic deviations.  相似文献   

5.
Frontier molecular orbitals can be visualized and selectively set to achieve blue phosphorescent metal complexes. For this purpose, the HOMOs and LUMOs of tridentate PtII complexes were measured using scanning tunneling microscopy and spectroscopy. The introduction of electron‐accepting or ‐donating moieties enables independent tuning of the frontier orbital energies, and the measured HOMO–LUMO gaps are reproduced by DFT calculations. The energy gaps correlate with the measured and the calculated energies of the emissive triplet states and the experimental luminescence wavelengths. This synergetic interplay between synthesis, microscopy, and spectroscopy enabled the design and realization of a deep‐blue triplet emitter. Finding and tuning the electronic “set screws” at molecular level constitutes a useful experimental method towards an in‐depth understanding and rational design of optoelectronic materials with tailored excited state energies and defined frontier‐orbital properties.  相似文献   

6.
7.
Orbital structure calculations were performed in the density functional theory (DFT) approximation for neutral complexes of Sc, Ti, V, Cr, and Co tris-β-diketonates; for the first three compounds, the structures of the ground ionic states and ionization energies were calculated in the CI approximation with decomposition on the orbitals of DFT. The sequence of the highest occupied orbitals found by this procedure coincides with the order of bands in the PES spectrum, while in the SCF-HF ab initio method, it does not. After the electron removal, all orbitals are stabilized by about 4.5 eV; for the vanadium complex, the removal of one d electron leads to the greatest stabilization of the remaining occupied orbital, which is essentially a d orbital. In CI calculations, using the DFT orbitals for decomposition does not lead to significantly better agreement with experiment when compared to the single-determinantal approximation and to the CI method with orbitals of the ab initio approximation.Original Russian Text Copyright © 2004 by I. S. Osmushko and V. I. Vovna__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 783–791, September–October, 2004.  相似文献   

8.
Fluorene‐thiophene (FT)‐based oligomers and polymers and their derivatives are good candidates for organic blue light‐emitting diodes. In this work, the intrinsic properties of the ground and excited states of FT monomer and its derivatives are studied. The ground‐state optimized structures and energies are obtained using molecular orbital theory and density functional theory (DFT). The ground‐state potential energy curves or surfaces of FT and its derivatives are also obtained. All derivatives are nonplanar in their electronic ground states. The character and energy of the first 20 singlet–singlet electronic transitions are investigated by applying the time‐dependent density functional theory (TD‐DFT) approximations to the correspondingly optimized ground‐state geometries. The lowest singlet state is studied with the configuration interaction (singles) approach (CIS). Excitation energies are red shifted when the FT unit or its derivatives are extended longitudinally. CIS results suggest geometry relaxation in the first singlet excited state. When available, a comparison is made with experimental results. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
Four new Schiff‐base type conjugative polymers (CPs), that is, Py 1‐4 carrying a strong electron‐withdrawing cyanopyridine scaffold coupled with different electron‐donating aromatic/heteroaromatic moieties were synthesized from their respective co‐monomers by simple poly‐condensation route. They were subjected to structural, thermal, photophysical, and electrochemical characterizations and theoretical investigations in order to identify their suitability in polymer light‐emitting diode (PLED) application. All these polymers showed good film‐forming ability and exhibited favorable photophysical behaviors with an optical bandgap in the order of 2.54‐2.68 eV. Further, their electrochemical data were used to evaluate highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. Finally, Py 1‐4 were successfully employed as blue‐light emitter in the construction of new ITO/PEDOT:PSS/ Py 1‐4 /Al configured light‐emitting diodes (LED), and the fabricated devices demonstrated stable blue electroluminescence behavior endorsing an effective electrons injection in the PLEDs.  相似文献   

10.
Polyfluorene PF?γCD rotaxane copolymer, composed of randomly distributed 9,9‐dioctylfluorene, methyltriphenylamine (electron‐donating) and 9‐dicyanomethylenefluorene complexed with γ‐cyclodextrin (γCD) (electron‐accepting) structural units, has been synthesized by Suzuki cross‐coupling reaction. The chemical structures were proved by FTIR and 1H NMR spectroscopy. The surface morphology, thermal, optical, electrochemical behavior, and adhesion characteristics of the obtained rotaxane copolymer have been investigated and compared with those of the nonrotaxane counterpart ( PF ). Relatively high fluorescence efficiency, almost identical normalized absorbance maximum in solution and solid‐state of PF?γCD rotaxane copolymer, and a more uniform and smoother surface with lower adhesion forces provides the role of γCD encapsulation on the lower aggregation propensity. PF?γCD and PF copolymers exhibit n‐ and p‐doping processes and blue‐light emission in the film state. The optical and electrochemical band gaps (ΔEg), as well as the highest occupied molecular orbital/lowest unoccupied molecular orbital positions in an energetic diagram indicate that both copolymers are promising blue‐emitting electroluminescent materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
Ambipolar diphenylamino end-capped oligofluorenylthiophenes and fluoroarene-thiophene show great potential for application in organic light-emitting diodes (OLEDs). Here, we provide an in-depth investigation on the optical and electronic properties of OF(2)TP-NPh ( 1a), OF(2)DTP-NPh ( 2a), OF(2)TTP-NPh ( 3a), OF(2)QTP-NPh ( 4a), and 2,5-bis-(2,3,5,6-tetrafluoro-4-trifluoromethyl-phenyl)-2,2':5',2':5',2'-quaterthiophene ( 5a). The geometric and electronic structures of the oligomers in the ground-state are studied with density functional theory (DFT) and ab initio Hartree-Fock, whereas the lowest singlet excited states are optimized by ab initio CIS. The energies of the lowest singlet excited states are calculated by employing time-dependent density functional theory (TDDFT). The results show that the highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps, ionization potentials, and electron affinities for the oligomers are affected by the thiophene chain length and the different end-caps. The absorption and emission spectra exhibit red shifts to some extent due to the increasing thiophene chain length and the enhancing electron-donating property of the end-caps. Furthermore, the large Stokes shifts ranging from 58 to 80 nm are examined, resulting from a more planar conformation of the excited-state between the two adjacent units in the oligomers. All the calculated data show that the fluoroarene-thiophene has improved electron transport rate and charge transfer balance performance, and all the studied molecules can be used as ambipolar-transporting materials in OLEDs.  相似文献   

13.
A series of N‐methyl‐3,4‐fulleropyrrolidine (NMFP) derivatives were designed by selecting different π‐conjugated linkers and electron‐donating groups as D‐π‐A and D‐A systems. The optimised structures and photo‐physical properties of NMFP and its derivatives have been determined using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods with the B3LYP functional and the 6‐31G basis set. According to the computation analysis, both the π‐conjugated linkers and the electron‐donating groups can influence the electronic and photo‐physical properties of the NMFP derivatives. Our calculated results demonstrated that the electron‐donating groups, with significant electron‐donating ability, had the tendency to increase the highest occupied molecular orbital (HOMO) energy. The π‐conjugated linkers with lower resonance energy decreased the lowest occupied molecular orbital (LUMO) energy and caused a significant decrease in the energy gap (Eg) between the EHOMO and ELUMO. A Natural Bond Orbital (NBO) analysis examines the effect of the electron‐donating group, π conjugated linker, and electron‐withdrawing group for these NMFP derivatives. For the NMFP derivatives, a projected density of state (PDOS) analysis demonstrated that the electron density of HOMO and LUMO are concentrated on the electron‐donating group and the π‐conjugated linker, respectively. A TD‐DFT/B3LYP calculation was performed to calculate the electronic absorption spectra of these NMFP derivatives. Both the electron‐donating group and the π‐conjugated linker contribute to the major absorption peaks, which are assigned as HOMO to LUMO transitions and are red‐shifted relative to those of non‐substituted NMFP.  相似文献   

14.
The electronic structure and stability in binary and ternary aluminum‐bismuth‐nitrogen nanoclusters up to six atoms are studied using density functional theory (DFT). The lowest energy geometries were obtained by sampling the geometrical space with a Monte Carlo method and geometry optimizations, at DFT level, with M06L functional. The clusters stability is analyzed using formation and fragmentation energies. Our results show that a high concentration of nitrogen presents a tendency to form nitrogen clusters. highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps show the well‐known oscillation as the number of atoms is increased. Bonding between Al, Bi, and N has mainly a π character. Bismuth and aluminum atoms tend to promote high multiplicity states in small clusters. These new binary and ternary materials provide a potential new field in optoelectronics and high energetic material compounds. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Jaguar is an ab initio quantum chemical program that specializes in fast electronic structure predictions for molecular systems of medium and large size. Jaguar focuses on computational methods with reasonable computational scaling with the size of the system, such as density functional theory (DFT) and local second‐order Møller–Plesset perturbation theory. The favorable scaling of the methods and the high efficiency of the program make it possible to conduct routine computations involving several thousand molecular orbitals. This performance is achieved through a utilization of the pseudospectral approximation and several levels of parallelization. The speed advantages are beneficial for applying Jaguar in biomolecular computational modeling. Additionally, owing to its superior wave function guess for transition‐metal‐containing systems, Jaguar finds applications in inorganic and bioinorganic chemistry. The emphasis on larger systems and transition metal elements paves the way toward developing Jaguar for its use in materials science modeling. The article describes the historical and new features of Jaguar, such as improved parallelization of many modules, innovations in ab initio pKa prediction, and new semiempirical corrections for nondynamic correlation errors in DFT. Jaguar applications in drug discovery, materials science, force field parameterization, and other areas of computational research are reviewed. Timing benchmarks and other results obtained from the most recent Jaguar code are provided. The article concludes with a discussion of challenges and directions for future development of the program. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
王继芬  封继康  任爱民  杨丽 《中国化学》2005,23(12):1618-1624
The structures, ionization potentials (IP), electron affinities (EA) and HOMO-LUMO gaps (AEH.L) of the terfluorene oligomers were studied by the density functional theory with B3LYP functional. The characters of the front orbitals were analyzed on the basis of the ground structure. The vertical excitation energies Ev and the maximal absorption wavelengths λabs of a series of ter(9,9-diarylfluorene) compounds were studied employing the time dependent density functional theory (TD-DFT) and ZINDO. The calculated maximal absorption wavelengths by both methods are in good agreement with the experimental data. The results show that the differences between terfluorene hh and ter(9,9-diarylfluorene) derivatives are slight in the structures and the electronic states except that there is the spiroconjugation in the latter. The spiroconjugation made these derivatives far from optimization in terms of stability. Excited structure of hh was calculated to be compared with the ground structure, which indicats that it has strong coplanar tendency of aromatic ring with the neighbour in the excited state. Consequently, they are good blue emitting materials with promising thermal stability.  相似文献   

17.
The electronic structure and reactivity trends of a set of tris‐(n‐methyl‐8‐quinolinolato) metal (III) (n = 0, 3, 4, 5; metal = Al+3, Ga+3) used as electron‐transport layer in organic light‐emitting diodes were studied and compared. All geometries were optimized at B3LYP/6‐31G(d,p) level of theory. The geometries of the ground state (S0) of unsubstituted molecules AlQ3 and GaQ3 were found to be slightly affected by the methyl group, which is in agreement with previous works. Methyl‐derivatives conserve largely the electronic structures of AlQ3 and GaQ3. The energies of the frontier orbitals highest occupied and lowest unoccupied molecular orbital are raised by the electron‐releasing effect of methyl group. Molecular orbital contribution analysis reveals that the orbital population is essentially the same for both MQ3 and their derivatives. Analyses of the ionization potential and electron affinity showed that MQ3 tend to be better hole‐blockers than methylated analogues and 5Me‐MQ3 have higher hole‐injection capability than the other methyl‐substituted derivatives. The global reactivity analysis showed that the electrophilicity index can be an indicator of electron‐injection capability in these complexes. Local reactivity analysis showed that atomic sites that are prone to nucleophilic/electrophilic attack are atoms C‐4 in L3/C‐5 in L1. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

18.
We have calculated the optical and electronic properties of several conjugated organic polymers: poly(p‐phenylene‐vinylene) (PPV) and its derivatives. Cyano substitutions on the phenylene ring: poly(2,5‐dicyano‐p‐phenylene‐vinylene) (2,5‐DCN‐PPV) and on the vinylene linkage: poly(p‐phenylene‐7(,8)‐(di)cyano‐vinylene) are considered. In addition, poly(quinoxaline‐vinylene) (PQV) is studied. The infinite isolated quasi‐1D chains are treated with periodic boundary conditions, using atomic basis sets. In a comparative study of PPV, some issues regarding the selection of the functionals and basis sets are discussed and excitation energies derived from time‐dependent and from ordinary methods are compared. It is concluded that for these polymers the calculations are informative at the B3LYP/6‐31G** density functional theory (DFT) level. The absolute values might change with improved methods, but the similarity of the polymers suggests that the relative characterization is adequate. Band structures are communicated along with characteristics of the highest occupied and the lowest unoccupied crystal orbitals (HOCO and LUCO). Electron affinities, ionization potentials, valence and conduction bandwidths, and effective masses at the bandgap are given. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

19.
Density functional theory (DFT) calculations, including the ab initio molecular dynamics method, atom‐centered density matrix propagation (ADMP), were used to investigate the hydrolysis reaction of a dichlorophosphazene trimer. The model trimer, intermediate structures and the product of the first step of hydrolysis, were optimized using DFT with the B3LYP density functional, followed by a 600 fs ADMP simulation. Natural bond order analysis (NBO) was used to determine atomic charges and occupancy of the bond orbitals and the lone pair orbitals of the molecule at various points along the simulation pathway. The simulation successfully shows dissociation of the trimer backbone into two distinct product molecules, shown through both increasing separation of the product units and through the more thorough NBO analysis of the bond orbitals. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Justifications developed for the application the free electron model to the π‐orbitals of conjugated molecules suggest that the optical properties of these molecules would be well described by a one‐dimensional free electron model with a potential chosen to reproduce the energy level spacing of the ground state occupied π‐orbitals. Such a hybrid ab initio/free electron modeling approach, where the free electron potential parameters are optimized on a molecule‐by‐molecule basis, is developed, and applied to a series of simple cyanine and oxonol dyes. The ensuing predictions for λmax, oscillator strengths, and redox properties compare well to available experimental information. Two important strengths of this approach are that no explicit calculations of the excited electronic state are required, and that the ab initio determination of the occupied π‐orbital level spacing considers all the electrons (π and σ) of the entire molecule in a specified geometry, environment, etc. This second characteristic gives the ability to efficiently model modifications of the optical properties of conjugated molecules resulting from chemical and/or physical modifications occuring within and remote to the conjugated region of the molecule. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 943–953, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号