首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Samples of nominal composition Fe0.9-xMn0.1Alx (0.1 ? x ? 0.5) were prepared by mechanical alloying starting from pure elements. Milling times of 24, 72 and 144 h were considered. The magnetic properties of the samples were studied by using 57Fe Mössbauer spectroscopy, vibrating sample magnetometry and magnetic susceptibility measurements. The phase distribution was determined from X-ray diffractometry. The so obtained results evidence a strong dependence on the milling time and Al concentration of the room-temperature hyperfine field distributions and coercive forces. The susceptibility measurements in the range of temperature between 10 K and 180 K suggest the occurrence of different types of transitions as the temperature is increased: (a) from a ferromagnetic to a paramagnetic phase, (b) from a reentrant spin-glass phase to a ferromagnetic one and (c) from spin-glass to a paramagnetic phase. These transitions are also strongly influenced by the milling time and the Al concentration.  相似文献   

2.
Magnetic properties of nickel catalysts vary by gas adsorption. In this paper, the variation of magnetic susceptibility and of saturation magnetization with chemisorption are derived taking into account the possibility of preferencial fixation on ferromagnetic particles of given size: high field techniques enable one to calculate a parameter α, the overal magnetic moment change in the fixation of one molecule; if the sample is superparamagnetic, low field techniques give (1 + A) α, where A depends upon the particle size distribution and upon a function which describes the preferencial adsorption. Experimental results concerning adsorption of O2 and H2 on NiSiO2 catalysts are reported; they are interpreted by assuming that H2 is uniformly adsorbed on the metal surface and that O2 is preferencially fixed on small particles. Some comments are added about the adsorption of hydrocarbons on nickel.  相似文献   

3.
Various theoretical models (self-consistent field, local linearization, and percolation theory methods and an analytic solution of the linear problem for an ordered medium) for calculating the magnetostatic properties of two-phase composites containing one ferromagnetic phase were considered. The concentration and field dependences of the effective magnetic permeability were found. A method for determining the coercive force and remanent magnetization as functions of the ferromagnetic phase concentration was suggested. Numerical experiments were performed for composites with a periodic distribution of circular inclusions. The results were compared with the analytically calculated effective magnetic permeability.  相似文献   

4.
The electronic structure and magnetic properties of the Laves phase of LuFe2 with C14, C15, and C36 structures has been investigated using the full-potential linearized augmented plane wave method. In order to study the stability of magnetic phases, nonmagnetic and spin-polarized calculations for ferromagnetic ordering were performed. It is found that the ferromagnetic hexagonal C14 phase is the ground-state structure and the C15 phase is an intermediate state between the C14 and C36 structures. There is an increase in the average magnetic moment on the Fe sites in the order of C15 →C14 →C36 structures, whereas the Lu-moment is not significantly different. We also find that there exist both localized and itinerant d electrons, resulting in antiferromagnetic ordering in the three structures. Their density-of-states, equilibrium volumes, and elastic properties are discussed, which is important for the understanding of the physical properties of LuFe2 and may inspire future experimental research.  相似文献   

5.
The magnetic structure of Sr5Rh4O12 is based on Ising chains of rhodium ions with a variable valence, Rh3+-Rh4+. The ordering in the chains is assumed to be ferromagnetic. It has been shown that the magnetic structure and phase diagram of Sr5Rh4O12 are well described in a model taking into account weak antiferromagnetic interactions between the nearest and next-nearest neighbors on the triangular lattice of ferromagnetic Ising chains. The ground state at low temperatures is the two-sublattice stripe phase; this phase in the magnetic field is transformed to the ferrimagnetic phase and, then, to the ferromagnetic phase. Small plateaus can be observed in the region of the transition from the ferrimagnetic phase to the ferromagnetic one.  相似文献   

6.
The electronic structure of disordered Pd3Fe is studied within an almost self-consistent KKR-CPA procedures. Our starting point are the self-consistent potentials for the ordered ferromagnetic Pd3Fe obtained by the LMTO method. We perform the ferromagnetic calculation and examine the influence of disorder on the electronic structure of this alloy through the analysis of the Bloch spectral functions and densities of states and compare our results with experiment. We also propose a mechanism for the formation of magnetic moments in ferromagnetic alloys.  相似文献   

7.
王文彬  朱银燕  殷立峰  沈健 《物理学报》2018,67(22):227502-227502
复杂氧化物可以呈现出高温超导、庞磁阻以及多铁效应等诸多新奇的物理现象.这类材料中的电荷/自旋/轨道和晶格自由度之间的强耦合相互作用,可以导致多种相互竞争且能量非常接近的电子态的空间共存,这就是电子相分离现象.如果可以将材料的空间尺寸缩小到电子相分离的特征长度,其物理性质甚至电子关联作用本身都会发生根本的变化,从而有可能实现复杂氧化物中的量子调控.本文综述了我们课题组在过去几年中针对复杂氧化物中电子相分离的量子调控取得的进展,内容包括:发现了锰氧化物边缘电子态,通过氧化物微纳加工技术,实现了量子态空间分布的调控,提高了庞磁阻锰氧化物的临界温度;研究了当材料空间尺度小于其电子相分离特征尺度时电子相分离的表现,确定了在电子相分离消失以后体系的磁结构;通过超晶格生长技术调控了材料中的掺杂有序度,对锰氧化物中大尺度的电子相分离的物理机理从实验上给出了解释.  相似文献   

8.
采用脉冲激光沉积法分别在(100)LaAlO3和(100)SrTiO3基片上生长了La0.33Pr0.34Ca0.33MnO3薄膜,并通过磁测量和电输运测量对生长在不同基片上的La0.33Pr0.34Ca0.33MnO3薄膜的物性进行了研究.结果表明,基片和薄膜之间的压应力导致La关键词: 钙钛矿锰氧化物 相分离 电荷有序  相似文献   

9.
The features of metal‒semiconductor kinetic phase transformation in ferromagnetic semiconductors are studied. It is shown that heat release caused by current results in a positive feedback between the current density and the sample temperature, magnetization, and thermal-spin fluctuation amplitude. The Joule heating of the sample leads to disappearance of magnetization and, as a result, to restoration of the forbidden band between the conduction and valence bands. However, the energy gap width continues to change due to an increase in the fluctuations of internal exchange fields splitting the electron states. Within the framework of the developed model, an S-shaped volt-ampere characteristic is obtained for a EuO1–δ, ferromagnetic semiconductor. The lower branch of the characteristic corresponds to a ferromagnetic metal state (a “cold” phase) and the upper one is due to a semiconductor paramagnetic state (a “hot” phase).  相似文献   

10.
In this study the magnetic properties of Mn0.95Cr0.05As, prepared by mechanical milling, have been investigated. The results suggest that the presence of strains is very important for the magnetic state of the compound. In the presently studied compound, a combined magnetic and structural transition occurs from paramagnetic MnP phase to ferromagnetic NiAs phase at about 234 K. With further decreasing temperature, at 159 K, a transition from ferromagnetic NiAs phase to helimagnetic (Ha-type) MnP phase is observed, which is accompanied by an inverse magnetocaloric effect. The ferromagnetic phase is recovered when the temperature is increased. At both first-order transitions, at 159 and 234 K, large magnetic-entropy changes are observed.  相似文献   

11.
Transport properties of phase separated La0.8Ca0.2MnO3 crystals in the aged highly resistive metastable state were studied. It was found that the coexistence of different ferromagnetic phases at low temperatures is sensitive to electric current/field. In a contrast with the previously studied low resistivity metastable states the high resistivity state exhibits positive magnetoresistance and significant current dependence of the resistivity even at temperatures much higher than the Curie temperature. Application of current pulses results in appearance of zero bias anomaly in the current dependent conductivity. Similarly to the low resistivity metastable states the memory of the resistivity can be erased only after heating of the sample to Te ≈360 K. After one year storage at room temperature the La0.8Ca0.2MnO3 samples show clear signatures of aging. The aged samples spontaneously evolute towards high resistivity states. The results are discussed in the context of a coexistence of two ferromagnetic phases with different orbital order and different conductivity. The metallic ferromagnetic phase seems to be less stable giving rise to the experimentally observed electric field effects and aging.  相似文献   

12.
A physical picture of electron spin alignments in organic molecule-based ferrimagnets is given from numerical calculations of magnetic specific heat (C) and magnetic susceptibility (χ) as functions of temperature and static magnetic field (B) in terms of an Ising Hamiltonian for an alternating spin chain. The double-peak structure of specific heat appears for different parameter ratios and different magnetic field B, indicating that one peak originates from the ferromagnetic nature and the other from the antiferromagnetic nature. Meanwhile, we study successively the influence of intermolecular and intramolecular interaction on the magnetic susceptibility, showing that the ferromagnetic spin alignment in the alternating molecular chains of biradicals and monoradicals is equivalent to the ferromagnetic alignment of the effective S=1/2 spins. Our results are consistent with those of the Quantum Monte Carlo simulations and the exact diagonalization method and in qualitative agreement with the experimental ones.  相似文献   

13.
We study inhomogeneous two-dimensional Ising models with a random distribution of ferro- and antiferromagnetic couplings,K ij =±K, or equivalently a random distribution of frustrations. In particular, we considerRandom Layered Frustration models (RLF) where randomness is confined to the vertical direction. These RLF-models are solved exactly, i.e., partition function and free energy are obtained in closed form for an arbitrary random distribution of finite period. The phase transition is of Ising type. A simple formula for the transition temperature is derived which depends only on the mean coupling , but not on other details of the distribution. Both cases,T c =0 andT c 0, are possible. Groundstate energy and groundstate degeneracy, or equivalently the rest entropy, are determined. It is found that both the occurence or absence of a phase transition may be accompanied with vanishing or nonvanishing rest entropy. We also show that for the RLF-models a phase transition is excluded when all groundstates are connected with one another by local transformations which presumably holds generally. A remarkable result is that the transition of the ferromagnetic Ising model can be destroyed completely if one replaces an arbitrarily small fraction of ferromagnetic couplings by antiferromagnetic ones in a suitable way.Work performed within the research program of the Sonderforschungsbereich 125 Aachen-Jülich-Köln  相似文献   

14.
The magnetic linear birefringence of an FeBO3: Mg ferromagnetic crystal is investigated as a function of the magnetic field strength, the magnetic field orientation, and the coordinates. The structure of the inhomogeneous magnetic phase of this weak ferromagnet is determined by analyzing the experimental results obtained. It is shown that, in an inhomogeneous magnetic state, the ferromagnetic moment does not deviate from the basal plane of the crystal and the angle of its deviation from the direction of the applied magnetic field is described by a one-dimensional harmonic function of the spatial coordinate along the axis of magnetization.  相似文献   

15.
V. P. S. Awana  H. Kishan 《Pramana》2006,66(1):247-250
The Ru0.9Sr2YCu2.1O7.9 compound synthesized by HPHT (high pressure high temperature) solid-state reaction route exhibits bulk superconductivity below 30 K. Also the Ru-spins are ordered magnetically above 143 K, with a ferromagnetic component at 5 K. Low field (<1000 Oe)M vs.H plots show that both the superconducting and ferromagnetic components are present in the compound at 5 K. At low temperatures, the compound though remains in spontaneous vortex phase, itsM vs.H hysteresis loop is symmetric instead of the theoretically expected asymmetric one. Our results cast doubts on either theoretical model or the intrinsic nature of ferromagnetic superconductivity in studied ruthenate.  相似文献   

16.
Ni2Y and Nd–Fe–Nb–B catalysts were used for the processing of nanoparticles by arc discharge between graphite electrodes. The products were collected from the cathode (deposit and collar) and reactor walls (soot). The ferromagnetic nanoparticles have size in the range of 10–50 nm and are encapsulated in carbon shells. The chemical composition, structure and magnetic properties of the nanoparticles have been studied. For the Ni2Y catalyst we found that the arc discharge results in decomposition of the intermetallic Ni2Y phase and formation of Ni nanoparticles encapsulated in carbon shells in the collar and soot, whereas yttrium oxide was found in the deposit. For the Nd–Fe–Nb–B catalysts the magnetic properties depend on the collection place and erosion rate. Fe and Fe–Nd–Nb nanoparticles were found in the soot and deposit, respectively.  相似文献   

17.
A variety of physical properties measured on the hexagonal rare-earth intermetallic compound PrCuSi are presented. We provide compelling evidence for antiferromagnetic ordering at TN = 5.1 K in this compound, in contrast to the former claim of ferromagnetic ordering at 14 K. The antiferromagnetic order is, however, found to be unstable in applied magnetic fields, becoming ferromagnetic beyond a metamagnetic transition at a field of 0.7 T at 2 K. It is argued that the magnetism in PrCuSi has the ingredients of a tricritical phase transition at the intersection of paramagnetism, ferromagnetism, and antiferromagnetism.  相似文献   

18.
The results of an investigation into how the composition of annealing mixtures influences the Curie temperature of single crystals of the CdCr2Se4 ferromagnetic semiconductor are reported. The mechanism of doping of single crystals is analyzed, and the role played by each of the components of the annealing batch is established. It is concluded that the indirect exchange involving n-type carriers near impurity gallium ions leads to a sharp increase in the phase transition temperature (from 130 to 172 K) of the samples. The dependences of the magnetization of samples with different phase transition temperatures on the temperature and magnetic field are compared.  相似文献   

19.
The field induced reorientation of the magnetization of ferromagnetic (or antiferromagnetic) structure is treated within the framework of many-body Green's function theory by considering all components of the magnetization. The mean field theory is used to calculate the nearest neighbour and the next-neighbour super-exchange J1(Cr–Cr) and J2(Cr–(Zn(Cd)–Se)–Cr), respectively, for the Zn1–x Cd x Cr2Se4 in the range 0 < x < 1. The intraplanar and the interplanar interactions are deduced. The high temperature series expansions (HTSEs) are derived for the magnetic susceptibility and the two-spin correlation functions for a Heisenberg ferromagnetic model on the B-spinel lattice. The calculations are developed in the framework of the random phase approximation (RPA). The magnetic phase diagram is deduced. A spin glass phase is predicted for intermediate range of concentration. The obtained results are comparable with those obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) have been deduced. The obtained values are comparable to those of 3D Heisenberg model.  相似文献   

20.
We study the dynamics of geometric spin system on the torus with long-range interaction. As the number of particles goes to infinity, the process converges to a deterministic, dynamical magnetization field that satisfies an Euler equation (law of large numbers). Its stable steady states are related to the limits of the equilibrium measures (Gibbs states) of the finite particle system. A related equation holds for the magnetization densities, for which the property of propagation of chaos also is established. We prove a dynamical central limit theorem with an infinite-dimensional Ornstein-Uhlenbeck process as a limiting fluctuation process. At the critical temperature of a ferromagnetic phase transition, both a tighter quantity scaling and a time scaling is required to obtain convergence to a one-dimensional critical fluctuation process with constant magnetization fields, which has a non-Gaussian invariant distribution. Similarly, at the phase transition to an antiferromagnetic state with frequencyp 0, the fluctuation process with critical scaling converges to a two-dimensional critical fluctuation process, which consists of fields with frequencyp 0 and has a non-Gaussian invariant distribution on these fields. Finally, we compute the critical fluctuation process in the infinite particle limit at a triple point, where a ferromagnetic and an antiferromagnetic phase transition coincide.Work supported by Deutsche Forschungsgemeinschaft  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号