首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The energetic and electronic properties of N/V‐doped and N‐V‐codoped anatase TiO2 (101) surfaces are investigated by first‐principles calculations, with the aim to elucidate the relationship between the electronic structure and the photocatalytic performance of N‐V‐codoped TiO2. Several substitutional and interstitial configurations for the N and/or V impurities in the bulk phase and on the surface are studied, and the relative stability of different doping configurations is compared by the impurity formation energy. Systematic calculations reveal that N and V impurities can be encapsulated by TiO2 to form stable structures as a result of strong N‐V interactions both in the bulk and the surface model. Through analyzing and comparing the electronic structures of different doping systems, the synergistic doping effects are discussed in detail. Based on these discussions, we suggest that NOVTi codoping cannot only narrow the band gap of anatase TiO2, but also forms impurity states, which are propitious for the separation of photoexcited electron–hole pairs. In the case of NOVTi‐codoped TiO2 (101) surfaces, this phenomenon is especially prominent. Finally, a feasible synthesis route for NOVTi codoping into anatase TiO2 is proposed.  相似文献   

2.
Mesoporous silica synthesized from the cocondensation of tetraethoxysilane and silylated carbon dots containing an amide group has been adopted as the carrier for the in situ growth of TiO2 through an impregnation–hydrothermal crystallization process. Benefitting from initial complexation between the titania precursor and carbon dot, highly dispersed anatase TiO2 nanoparticles can be formed inside the mesoporous channel. The hybrid material possesses an ordered hexagonal mesostructure with p6mm symmetry, a high specific surface area (446.27 m2 g?1), large pore volume (0.57 cm3 g?1), uniform pore size (5.11 nm), and a wide absorption band between λ=300 and 550 nm. TiO2 nanocrystals are anchored to the carbon dot through Ti?O?N and Ti?O?C bonds, as revealed by X‐ray photoelectron spectroscopy. Moreover, the nitrogen doping of TiO2 is also verified by the formation of the Ti?N bond. This composite shows excellent adsorption capabilities for 2,4‐dichlorophenol and acid orange 7, with an electron‐deficient aromatic ring, through electron donor–acceptor interactions between the carbon dot and organic compounds instead of the hydrophobic effect, as analyzed by the contact angle analysis. The composite can be photocatalytically recycled through visible‐light irradiation after adsorption. The narrowed band gap, as a result of nitrogen doping, and the photosensitization effect of carbon dots are revealed to be coresponsible for the visible‐light activity of TiO2. The adsorption capacity does not suffer any clear losses after being recycled three times.  相似文献   

3.
Nitrogen and cerium codoped TiO2 photocatalysts were prepared by a modified sol-gel process with doping precursors of cerium nitrate and urea, and characterized by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), X-ray photoelectron spectra (XPS) and ultraviolet-visible light diffuse reflectance spectra (UV-vis DRS). Results indicate that anatase TiO2 is the dominant crystalline type in as-prepared samples, and CeO2 crystallites appear as the doping ratio of Ce/Ti reaches to 3.0 at%. The TiO2 starts to transform from amorphous phase to anatase at 987.1 K during calcination, according to the TG-DSC curves. The XPS show that three major metal ions of Ce3+, Ce4+, Ti4+ and one minor metal ion of Ti3+ coexist on the surface. The codoped TiO2 exhibits significant absorption within the range of 400-500 nm compared to the non-doped and only nitrogen-doped TiO2. The enhanced photocatalytic activity of the codoped TiO2 is demonstrated through degradation of methyl orange under visible light irradiation.  相似文献   

4.
A series of tungsten‐doped Titania photocatalysts were synthesized using a low‐temperature method. The effects of dopant concentration and annealing temperature on the phase transitions, crystallinity, electronic, optical, and photocatalytic properties of the resulting material were studied. The X‐ray patterns revealed that the doping delays the transition of anatase to rutile to a high temperature. A new phase WyTi1‐yO2 appeared for 5.00 wt% W‐TiO2 annealed at 900 °C. Raman and diffuse reflectance UV–Vis spectroscopy showed that band gap values decreased slightly up to 700 °C. X‐ray photoelectron spectroscopy showed that surface species viz. Ti3+, Ti4+, O2?, oxygen‐vacancies, and adsorbed OH groups vary depending on the preparation conditions. The photocatalytic activity was evaluated via the degradation of methylene blue using LED white light. The degradation rate was affected by the percentage of dopants. The best photocatalytic activity was achieved with the sample labeled 5.00 wt% W‐TiO2 annealed at 700 °C.  相似文献   

5.
A synchronous carbon‐coating and interfacial‐functionalizing approach is proposed for the fabrication of Mo‐doped MoxTi1?xO2‐δ nanotubes (C@IF‐MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo‐doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one‐dimensional (1D) structure with crystalline an anatase/rutile mixed‐phase TiO2 core and Mo‐functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF‐MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo‐functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed‐phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF‐MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.  相似文献   

6.
Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non‐thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2, and NH3. The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2@TiO2?x), which exhibit the improved visible and near‐infrared light absorption. The types of dopants (oxygen vacancy/surface Ti3+/substituted N) in oxygen‐deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti3+ and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti3+ (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2@TiO2?x from NH3 plasma with a green color shows the highest photocatalytic activity under visible‐light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma.  相似文献   

7.
Improving the chemical diffusion of Li ions in anatase TiO2 is essential to enhance its rate capability as a negative electrode for Li‐ion batteries. Ammonia annealing has been used to improve the rate capability of Li4Ti5O12. Similarly, ammonia annealing improves the Li‐ion storage performance of anatase TiO2 in terms of the stability upon cycling and the C‐rate capability. In order to distinguish whether N doping or oxygen deficiencies, both introduced upon ammonia annealing, are more relevant for the observed improvement, a systematic electrochemical study was performed. The results suggest that the creation of oxygen vacancies upon ammonia annealing is the main reason for the improvement of the stability and C‐rate capability.  相似文献   

8.
Compositing amorphous TiO2 with nitrogen‐doped carbon through Ti? N bonding to form an amorphous TiO2/N‐doped carbon hybrid (denoted a‐TiO2/C? N) has been achieved by a two‐step hydrothermal–calcining method with hydrazine hydrate as an inhibitor and nitrogen source. The resultant a‐TiO2/C? N hybrid has a surface area as high as 108 m2 g?1 and, when used as an anode material, exhibits a capacity as high as 290.0 mA h g?1 at a current rate of 1 C and a reversible capacity over 156 mA h g?1 at a current rate of 10 C after 100 cycles; these results are better than those found in most reports on crystalline TiO2. This superior electrochemical performance could be ascribed to a combined effect of several factors, including the amorphous nature, porous structure, high surface area, and N‐doped carbon.  相似文献   

9.
Cerium ions (Ce3+) can be selectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one‐pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E°(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+‐doped nanofibers are irradiated by UV light, the doped Ce3+ ions—in close vicinity to the interface between the TiO2(B) core and anatase nanoshell—can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge‐separation mechanism accelerates dye degradation and alcohol oxidation processes. The one‐pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed‐phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed‐phase nanofibers as the ions could not trap the photogenerated holes.  相似文献   

10.
Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C?x (x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN)6]3? into a cationic CoII‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential (Eonset: 0.97 V) and half‐wave potential (E1/2: 0.86 V) comparable to that of commercial Pt/C (Eonset=1.02 V; E1/2=0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample (Eonset=0.92 V; E1/2=0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic CoII‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.  相似文献   

11.
A simple strategy is used to thermally oxidize TiN nanopowder (~20 nm) to an anatase phase of a TiO2:Ti3+:N compound. In contrast to the rutile phase of such a compound, this photocatalyst provides activity for hydrogen evolution under AM1.5 conditions, without the use of any noble metal co‐catalyst. Moreover the photocatalyst is active and stable over extended periods of time (tested for 4 months). Importantly, to achieve successful conversion to the active anatase polymorph, sufficiently small starting particles of TiN are needed. The key factor for catalysis is the stabilization of the co‐catalytically active Ti3+ species against oxidation by nitrogen present in the starting material.  相似文献   

12.
合成了四种齐聚噻吩衍生物:5,5"-二氰基-2,2’:5’,2"-三噻吩 (DCN3T), 5,5"’-二氰基-2,2’:5’,2":5",2"’-四噻吩 (DCN4T), 5,5"’-甲氧基-2,2’:5’,2":5",2"’-四噻吩(DMO4T) 和 4,4"-二羧基-5,5"-二丙基-2,2’:5’,2"-三噻吩 (BP3T-DCOOH),研究了它们的电致变色性质,研究结果发现,这四种齐聚噻吩衍生物膜在电场作用下,可以发生可逆的颜色变化。  相似文献   

13.
PPV‐based copolymers containing phenothiazine‐5‐oxide and phenothiazine‐5, 5‐dioxide moieties have been successfully synthesized by Wittig‐Horner reaction and characterized by means of UV‐vis, photoluminescence, electroluminescence spectra, and cyclic voltammetry. All of these copolymers can be dissolved in common organic solvents such as chloroform, tetrahydrofuran, and toluene. The PL maxima in the film state are located at 582, 556, and 552 nm for P1, P2, and P3, respectively. The HOMO and LUMO levels of P2 are found to be ?5.21 and ?2.68 eV, respectively; whereas those of P3 are found to be ?5.26 and ?2.71 eV, respectively. The cyclic voltammetry result indicates that the conversion of electron‐donating sulfide to electron‐withdrawing sulfoxide or sulfone group in polymers plays a dominating role in increasing its oxidation potential. Yellowish‐green light ranging from 568 to 540 nm was observed for the single layer device with the configuration of ITO/Polymer/Ca/Al. Double layer devices with Zn (BTZ)2 as a hole blocking layer exhibited enhanced EL performance compared to the single layer devices. The maximum brightness of the double layer devices of P1, P2, and P3 is 278, 400, and 796 cd/m2, respectively. The results of EL and electrochemical analyses revealed that they are promising candidate materials for organic, light‐emitting diodes with hole‐transporting ability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4291–4299, 2007  相似文献   

14.
Nanosized cerium and nitrogen co-doped TiO2 (Ce–TiO2?xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N2 adsorption and desorption methods, photoluminescence and ultraviolet–visible (UV–vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in ?3 state in Ce–TiO2?xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce–O–Ti interface and also inhibits Ce particles from sintering. UV–visible DRS studies show that the metal–metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ → Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron–hole pair separation between the two interfaces Ce–TiO2?xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce–TiO2?xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce–TiO2?xNx was due to the participation of MMCT and interfacial charge transfer mechanism.  相似文献   

15.
《中国化学》2018,36(6):538-544
Bi‐ and Y‐codoped TiO2 photocatalysts were synthesized through a sol‐gel method, and they were applied in the photocatalytic reduction of CO2 to formic acid under visible light irradiation. The results revealed that, after doping Bi and Y, the surface area of TiO2 was increased from 5.4 to 93.1 m2/g when the mole fractions of doping Bi and Y were 1.0% and 0.5%, respectively, and the lattice structures of the photocatalysts changed and the oxygen vacancies on the surface of the photocatalysts formed, which would act as the electron capture centers and slow down the recombination of photo‐induced electron and hole. The photocurrent spectra also proved that the photocatalysts had better electronic transmission capacities. The HCOOH yield in CO2 photocatalytic reduction was 747.82 μmol/gcat by using 1% Bi‐0.5% Y‐TiO2 as a photocatalyst. The HCOOH yield was 1.17 times higher than that by using 1% Bi‐TiO2, and 2.23 times higher than that by using pure TiO2. Furthermore, the 1% Bi‐0.5% Y‐TiO2 showed the highest apparent quantum efficiency (AQE) of 4.45%.  相似文献   

16.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   

17.
Novel bi‐triphenylamine‐containing aromatic dibromide M3 , N,N‐bis(4‐bromophenyl)‐N′,N′‐dipheny‐l,4‐phenylenediamine, was successfully synthesized. The novel conjugated polymer P1 having number‐average molecular weight of 1.31 × 104 was prepared via Suzuki coupling from the dibromide M3 and 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. Polymer P1 had excellent thermal stability associated with a high glass‐transition temperature (Tg = 141 °C). The hole‐transporting and UV‐vis‐near‐infrared electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the conjugated polymer films cast onto indium‐tin oxide‐coated glass substrates exhibited two reversible oxidation redox couples at E1/2 values of 0.73 and 1.13 V versus Ag/Ag+ in acetonitrile solution. The hole mobility of the conjugated polymer P1 revealed ~10?3 cm2 V?1 s?1, which is much higher than that of other conjugated polymer systems. The observed UV‐vis‐near‐infrared absorption change in the conjugated polymer film P1 at applied potentials ranging from 0.00 to 1.23 V are fully reversible and associated with strong color changes from pale yellowish in its neutral form to green and blue in its oxidized form. Using a combination of experimental study and theoretical investigation, we proposed an oxidation mechanism based on molecular orbital theory, which explains the cyclic voltammetry experimental results well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Zn‐doped anatase TiO2 nanoparticles are synthesized by a one‐step hydrothermal method. Detailed electrochemical measurements are undertaken to investigate the origin of the effect of Zn doping on the performance of dye‐sensitized solar cells (DSSCs). It is found that incorporation of Zn2+ into an anatase lattice elevates the edge of the conduction band (CB) of the photoanodes and the Fermi level is shifted toward the CB edge, which contributes to the improvement in open‐circuit voltage (VOC). Charge‐density plots across the cell voltage further confirm the increase in the CB edge in DSSCs directly. Photocurrent and transient photovoltage measurements are employed to study transport and recombination dynamics. The electron recombination is accelerated at higher voltages close to the CB edge, thus leading to a negative effect on the VOC.  相似文献   

19.
A new synthetic method to fabricate Ti3+‐modified, highly stable TiO2 photoanodes for H2O oxidation is reported. With Ti foil as both the conducting substrate and the Ti3+/Ti4+ source, one‐dimensional blue Ti3+/TiO2 crystals were grown by a one‐step hydrothermal reaction. The concentration of Ti3+ was further tuned by N2H4 reduction, leading to a greater photoelectrocatalytic activity, as evidenced by a high photocurrent density of 0.64 mA cm?2 at 1.0 V vs RHE under simulated AM 1.5 G illumination. Electron paramagnetic resonance and Mott–Schottky plots reveal that higher charge‐carrier density owing to N2H4 reduction contributes to the observed improvement. The generality of this synthesis method was demonstrated by its effectiveness in improving the performance of other types of photoanodes. By integrating the advantages of the 1D TiO2 architecture with those of Ti3+ self‐doping, this work provides a versatile tool toward the fabrication of efficient TiO2 photoanodes.  相似文献   

20.
Titanium‐oxide‐based materials are considered attractive and safe alternatives to carbonaceous anodes in Li‐ion batteries. In particular, the ramsdellite form TiO2(R) is known for its superior lithium‐storage ability as the bulk material when compared with other titanates. In this work, we prepared V‐doped lithium titanate ramsdellites with the formula Li0.5Ti1?xVxO2 (0≤x≤0.5) by a conventional solid‐state reaction. The lithium‐free Ti1?xVxO2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion‐extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5Ti1?xVxO2 compounds and to follow the lithium extraction by difference‐Fourier maps. Previously delithiated Ti1?xVxO2 ramsdellites are able to insert up to 0.8 Li+ per transition‐metal atom. The initial gravimetric capacities of 270 mAh g?1 with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2‐related intercalation compounds for the threshold of one e? per formula unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号