首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three dual mode microwave apparatus (one using S ‐band and two using X ‐band) have been developed to determine ambipolar diffusion and electron‐ion recombination rates under conditions such that Tgas = 300K and Te is varied from 300 K to 6300 K, in the afterglow period of the dc glow discharge. TheTM010 cylindrical cavity (in S ‐band) and TM011 open cylindrical cavity (X ‐band) are used to determine the electron density during the afterglow period and a non‐resonant waveguide mode is used to apply a constant microwave heating field to the electrons. To test the properties of the apparatus the neon afterglow plasma has been investigated. At Te = 300 K a value of α (Ne+2) = (1.7± 0.2) × 10–7cm3/s is obtained which is in good agreement with values of other investigators. Also similar variations of α as T–0.4e (S ‐band) and as T–0.42e (X ‐band) obeyed over the range 300 ≤ Te ≤ 6300K are in good agreement with some other previous measurements. The simplicity of the X‐band microwave apparatus also allows the measurements of the gas temperature dependency and the study of electron attachment and may be used simultaneously with optical or mass spectrometry investigations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Cross sections are provided for most important collision processes of the Silicon‐Hydrides from the “Silanefamily”: SiHy (y = 1 ? 4) molecules and their ions SiH+y, with (plasma) electrons and protons. The processes include: electron impact ionization and dissociation of SiHy, dissociative excitation, ionization and recombination of SiH+y ions with electrons, and charge ‐ and atom ‐ exchange in proton collisions with SiHy. All important channels of dissociative processes are considered. Information is also provided on the energetics (reactants/products energy loss / gain) of each individual reaction channel. Total and partial cross sections are presented in compact analytic forms. The critical assessment of data, derivation of new data and presentation of results follow closely the concepts of the recently published related databases for Carbon‐Hydrides, namely for the Methane family [1, 2], and for the Ethane‐ and the Propane families [3], respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Hot electron cooling rate P, due to acoustic phonons, is investigated in three‐dimensional Dirac fermion systems at low temperature taking account of the screening of electron–acoustic phonon interaction. P is studied as a function of electron temperature Te and electron concentration ne. Screening is found to suppress P very significantly for about Te < 0.5 K and its effect reduces considerably for about Te > 1 K in Cd3As2. In Bloch–Grüneisen (BG) regime, for screened (unscreened) case the Te dependence is PTe9(Te5) and the ne dependence gives Pne–5/3 (ne–1/3). The Te dependence is characteristic of 3D phonons and ne dependence is characteristics of 3D Dirac fermions. The plot of P /Te4 vs. Te shows a maximum at temperature Tem which shifts to higher values for larger ne. Interestingly, the maximum is nearly same for different ne and Tem/ne1/3 being nearly constant. More importantly, we propose, the ne dependent measurements of P would provide a clearer signature to identify 3D Dirac semimetal phase. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
The electron temperatures Te were measured using a double probe in a premixed methane flame produced by a calibration burner according to Hartung et al. The experiment was performed at atmospheric pressure. In contrast to other authors, we have managed to find typical nonlinearities corresponding to the retarding electron current region and to calculate electron temperatures using a suitable fit on the basis of the measured characteristics. A Pt‐Rh thermocouple was used to measure temperatures Th corresponding to “heavy” species. Our results indicate that the flame plasma can be considered to be weakly non‐isothermic — Te = (2400–4000) K, Th = (1400–1600) K. On the basis of measurement of the saturated ion current, the number density of the charged particles was estimated at (0.3–3.8) · 1017 m‐3. The trends in Te and Th in dependence on the positions of the probes and thermocouple in the flame differ substantially; this fact has not yet been explained (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We have studied the validity of the double‐probe method in recombining plasmas. Electron temperature (Te) measured with a double probe was quantitatively evaluated by taking into account the influences of plasma potential fluctuation, plasma resistivity, and electron density fluctuation on the current–voltage characteristics. Differential potential fluctuation and plasma resistivity between two electrodes have a minor effect on Te especially when the inter‐distance is small (typically 1 mm). Scattering of measured Te due to the density fluctuation was sufficiently suppressed by making the data acquisition time long (typically 4 s) and taking the average. There is a good agreement between Te measured with the optimized double‐probe method and that with laser Thomson scattering diagnostics.  相似文献   

6.
Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (T e and density (n e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a Q-switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters T e from 30 eV to 1 keV and n e from 5 × 1012cm−3−5 × 1013cm−3. The system is also able to give the parameter profile from the plasma center (Z=0 cm) to a vertical position of Z=+22 cm to Z=−14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.  相似文献   

7.
The temperature dependence of the pulse conductivity for CsI crystals upon excitation with an electron beam (0.2 MeV, 50 ps, 400 A/cm2) at a time resolution of 150 ps is investigated. Under experimental conditions, the time of bimolecular recombination of electrons and holes (V k centers) is directly measured in the temperature range 100–300 K. This made it possible to calculate the temperature dependence of the effective recombination cross section S(T)=7.9×10?8 T2 cm2. The temperature dependence of the conductivity σ(T) is interpreted within the model of the separation of genetically bound electron-hole pairs. The activation energy of this process is found to be E G =0.07 eV.  相似文献   

8.
The spatial inhomogeneity of pulsed atmospheric pressure discharge in argon is investigated using the electron number density Ne diagnostics procedure applied to asymmetrically broadened Ar I lines. A dedicated fitting procedure is used for describing Ar I 703.0 nm line shape recorded from argon gas discharge and H I (at 486.13 and 656.28 nm) lines recorded from Ar-H2 gas mixture discharge. The results revealed the change in Ne in both axial and radial directions. The additional Ar I lines at 614.5, 710.7, 731.2, and 731.6 nm, recorded from integral spatial radiation, are analysed as well to confirm the results from the plasma column region. The possibility of using AlO (B2+–X2+) and CN (B2+–X2+) molecular bands for gas temperature Tg measurements in this type of gas discharge source is demonstrated and Tg used as an input parameter for the Ne diagnostics procedure. For the proper identification of molecular band spectral lines, the Fortrat parabolas are constructed. The results obtained from Ar I 703.0 nm line indicate three different Ne values, with Ne1 ≈ 0.6 × 1016 cm−3, Ne2 ≈ 3.6 × 1016 cm−3, and Ne3 ≈ 19 × 1016 cm−3 measured from the plasma column. These Ne values increase in the cathode and anode region.  相似文献   

9.
The gain saturation in the 46.9 nm line of the Ar+8 laser is analyzed using an atomic kinetics code. The dependence of the gain (G) on the electron kinetic temperature (Te) in the region (50 ‐150 eV) is calculated in the quasi steady‐state approximation for the different values of the electron density (Ne) and the plasma radius (rpl). The influence of radiat on trapping, ion random and mean velocities, Stark line broadening and refraction losses on the gain saturation is taken into consideration. For rpl = 150‐600 μm, the amplplication (G > 0 cm‐1) exists in the large temperature/density domain (Te = 60‐150 eV, Ne = 0.5‐10 × 1018 cm‐3). However, the value Gs ∼ 1.4 cm‐1 required for the gain saturation at the typical plasma length Lpl ∼ 15 cm is reached in the extremely narrow density regions at the high temperatures. The saturation is reached for rpl = 600 μm at Tse = 150 eV in the region Nse = 1.8‐2 × 1018 cm ‐3, for rpl = 300 μm at Tse = 125 eV and Nse = 2.5‐3 × 1018 cm‐3, and for rpl = 150 μm at Tse = 110 eV and Nse = 3‐4 × 1018 cm‐3. The broadest density region (Nse = 2 ‐8 × 1018 cm‐3) is predicted for the narrowest column (rpl = 150 μm) at the highest temperature (Tse = 150 eV). The operation in the broadest density region Nse, should make easier achievement of the gain saturation in the experiments.  相似文献   

10.
The high-pressure and high-temperature behaviors of LiF and NaF have been studied up to 37 GPa and 1000 K. No phase transformations have been observed for LiF up to the maximum pressure reached. The B1 to B2 transition of NaF at room temperature was observed at ~28 GPa, this transition pressure decreases with temperature. Unit-cell volumes of LiF and NaF B1 phase measured at various pressures and temperatures were fitted using a P–V–T Birch–Murnaghan equation of state. For LiF, the determined parameters are: α0 = 1.05 (3)×10?4 K?1, dK/dT = ?0.025 (2) GPa/K, V 0 = 65.7 (1) Å3, K 0 = 73 (2) GPa, and K′ = 3.9 (2). For NaF, α0 = 1.34 (4)×10?4 K?1, dK/dT = ?0.020 (1) GPa/K, V 0 = 100.2 (2) Å3, K 0 = 46 (1) GPa, and K′ = 4.5 (1).  相似文献   

11.
In a dc glow discharge in oxygen, the concentrations of minor components of O2(a1Δg), O2(b1 Σg), O3, O(1D), as well as nagative ions and electrons have been measured. Balance equations have been derived which describe satisfactorily the stationary concentrations of these components as functions of gas pressure and discharge current. For the first time, the rate constants of important aeronomical reactions (a) O? + O2(a1Δg) → O3 + e, (b) O2? + O2(a1Δg) → 2O2 + e and (c) e + O3 → O2? +O have been measured as functions of gas temperature T and mean energies of ions Ei and electron E6: Ka = (2.5 ± 0.5) · 10?9 · (T/300)4 ± 0.4· (Ei/0.04)?2.6 ± 0.4 cm3/s for T = 385?605 K and Ei = 0.10 ? 0.66 eV; Kb = (1.0 ± 0.3) · 10?10 · (T/300)?2 ± 0.5 · (Ei/0.04)0.23 ± 0.05 cm3/s for T = 330?605 K and Ei = 0.09 + 1.5 eV; Kc for Ee = 0.8÷5 eV.  相似文献   

12.
The electron-electron, electron-ion, ion-ion and charge-charge static structure factors are calculated for alkali (at T = 30 000 K, 60 000 K, n e = 0.7 × 1021 ÷ 1.1 × 1022 cm-3) and Be2+ (at T = 20 eV, n e = 2.5 × 1023 cm-3) plasmas using the method described by Gregori et al. The dynamic structure factors for alkali plasmas are calculated at T = 30 000 K, n e = 1.74 × 1020, 1.11 × 1022 cm-3 using the method of moments developed by Adamjan et al. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the repulsion due to the Pauli exclusion principle. The repulsive part of the Hellmann-Gurskii-Krasko (HGK) potential reflects important features of the ion structure. Our results on the static structure factors for Be2+ plasma deviate from the data obtained by Gregori et al., while our dynamic structure factors are in a reasonable agreement with those of Adamyan et al.: at higher values of k and with increasing k the curves damp down while at lower values of k, and especially at higher electron coupling, we observe sharp peaks also reported in the mentioned work. For lower electron coupling the dynamic structure factors of Li+, Na+, K+, Rb+ and Cs+ do not differ while at higher electron coupling these curves split. As the number of shell electrons increases from Li+ to Cs+ the curves shift in the direction of low absolute value of ω and their heights diminish. We conclude that the short range forces, which we take into account by means of the HGK model potential, which deviates from the Coulomb and Deutsch ones, influence the static and dynamic structure factors significantly.  相似文献   

13.
Hydrogen plasmas out of ionization equilibrium are either ionizing or recombining depending on the electron temperature Te . Within the transition region between these two opposite states a minimum of the Hα emission is often experimentally observed. Simple cases were previously analyzed which could be interpreted assuming only a temperature variation, i.e the electron density was constant in the transition region. Here we discuss two examples in which both the density and the temperature vary at the transition. In the linear plasma generator PSI‐II a hydrogen plasma is cooled down by puffing additional gas. We find a minimum at Tmin ≈ 1.1 eV. A second example is the effect of an ELM(edge localized mode) pulse propagating through a recombining divertor plasma in the tokamak ASDEX Upgrade. The Hα response shows a double peak which can be interpreted as a local minimum assuming a simultaneous rise of density and temperature during an ELM. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
AbstractExperimental data on the change in the electron density in the wake of a ballistic object traveling at velocities V =3.4–4.9 km/s in argon at pressures p =30–100 Torr are processed and analyzed. A reaction scheme is proposed which takes into account the recombination of charged particles, processes of ionic conversion, and the excited states of the atom. The solution of the equations of a nonequilibrium boundary layer for flow in the wake is used to formulate the inverse problem of determining the rate constants for dissociative recombination Ar 2 + +e→Ar+Ar and ternary recombination Ar++e+Ar→Ar+Ar. The “nearest-neighbor” approximation is used to obtain theoretically an expression for the ternary recombination coefficient as a function of temperature and pressure. Numerous solutions of inverse problems and a comparison with experiments demonstrates the validity of the expression obtained for the ternary recombination coefficient. It is shown that this expression is valid for moderate pressures and complements the Pitaevskii result for low pressures and the Langevin result for high pressures. Zh. Tekh. Fiz. 67, 12–18 (May 1997)  相似文献   

15.
A MHD, symmetrical, nonpotential waves in nonuniform, cylindrical nonisothermal plasma waveguide placed in a finite external magnetic field H 0 directed along the axis of the waveguide are considered. The thermal velocity of the electrons νTe = (kTe/me)1/2 (k — Boltzman's constant, Te — temperature, me — mass of the electron) is not neglected. As a consequence we obtain one more solution in the plasma region and respectively an equation of third power on χ2 — the transverse wave number. As far as we know only equations of second power on χ2 describing non-potential waves are investigated. The dispersion equations are written solving the boundary-value problem. Our results coincide with well known ones when the electron thermal velocity tends to zero.  相似文献   

16.
17.
18.
The retardation of the recombination of electrons and holes in semiconductors in an applied uniform magnetic field has been predicted. It has been shown that the recombination time in germanium in the temperature range of T = 1–10 K at charge carrier densities of n e = 1010−1014 cm−3 in magnetic fields of B = 3 × 102−3 × 104 G can be more than two orders of magnitude larger than that at zero magnetic field. This means that, after creation of nonequilibrium charge carriers by their injection at the p-n junction owing to some radiation sources or fast electron irradiation, the semiconductor retains its conductivity for a much longer time at nonzero applied magnetic field. The effect under study can be used, for example, to detect radiation sources.  相似文献   

19.
Thermoluminescence of KI: T1, X- or β-irradiated at T ?77°K shows two main peaks at 105°K and 170°K. They are respectively attributed to the recombination of mobile VK centres with T1O centres and to the recombination of thermally released electrons from T1O centres with T12+ centres. Similar experiments performed under static electric fields (E <40kV cm-1) show that the intensity of the second glow peak is strongly reduced. The relative intensity variation is anticorrelated with the intensity of glow peaks occurring at T > 230 °K. We suggest that in the temperature range in which T1O centres are thermally ionised, the effect of the electric field is to favour the retrapping of these electrons on other traps (still unknown). Irradiation doses also play an important role and their effects are studied at T = 77 °K and T = 200 °K.  相似文献   

20.
A review is given on three types of experiments which recently detected the interference of electromagnetic and weak interactions at high energies in the reactions eD2 → eX (SLAC, 1979), e+e → μ+μ (PETRA/PEP, 1981–83) and μ±C→μ±X (BCDMS, 1982). Asymmetry formulae are explicitely derived using the quark-parton model and the SU(2) × U(1) standard theory. With particular emphasis on the deep inelastic muon scattering experiment, the corresponding experiments are described and their results summarized. Combined fits to the 1983 asymmetry and νe data verify completely the muon-electron universality of the weak neutral current interaction giving for the vector and axial-vector coupling constants ve = 0.02 ± 0.06, ae = −0.54 ± 0.03 (electrons) and vμ = −0.05 ± 0.16, aμ = −0.51 ± 0.05 (muons).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号