首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substituted 2‐(benzylamino)‐2H‐1,4‐benzoxazin‐3(4H)‐ones are unstable under alkaline and acidic conditions, undergoing opening of the benzoxazinone ring. 2‐Bromo‐2H‐1,4‐benzoxazin‐3(4H)‐ones show similar degradation under alkaline conditions, while replacement of Br at C(2) to give 2‐hydroxy‐2H‐1,4‐benzoxazin‐3(4H)‐ones was observed only under mild alkaline conditions. Mechanisms of ring opening and degradation to 2‐aminophenol derivatives are proposed.  相似文献   

2.
A convenient approach to 2,2′‐(1,4‐phenylene)bis[1‐acetyl‐1,2‐dihydro‐4H‐3,1‐benzoxazin‐4‐one] derivatives 4 was explored employing the one‐pot condensation of anthranilic acids (=2‐aminobenzoic acids) 1 with terephthalaldehyde (=benzene‐1,4‐dicarboxaldehyde; 2 ) under ultrasound‐irradiation conditions (Scheme 1). The reactions proceeded smoothly in the presence of excess Ac2O in the absence of any other catalyst and solvent to afford the respective products in high yields.  相似文献   

3.
A series of novel quinazolin‐4(3H)‐one derivatives were efficiently synthesized starting from isatoic anhydride. First, reaction of isatoic anhydride and amines in H2O at room temperature afforded 2‐aminobenzamides. Then, CuBr/Et3N promoted reaction of 2‐aminobenzamides and different aryl isothiocyanates in DMF at 80° afforded the title compounds in good yield.  相似文献   

4.
Different metal perchlorates were screened to catalyze the three‐component reaction of anthranilic acid, triethyl orthoformate and amines to afford quinazolin‐4(3H)‐ones in solvent‐free conditions. Ni(ClO4)2 or Zn(ClO4)2 was demonstrated to be efficient to catalyze the reaction.  相似文献   

5.
The 3‐allyl‐2‐methylquinazolin‐4(3H)‐one ( 1 ), a model functionalized terminal olefin, was submitted to hydroformylation and reductive amination under optimized reaction conditions. The catalytic carbonylation of 1 in the presence of Rh catalysts complexed with phosphorus ligands under different reaction conditions afforded a mixture of 2‐methyl‐4‐oxoquinazoline‐3(4H)‐butanal ( 2 ) and α,2‐dimethyl‐4‐oxoquinazoline‐3(4H)‐propanal ( 3 ) as products of ‘linear’ and ‘branched’ hydroformylation, respectively (Scheme 2). The hydroaminomethylation of quinazolinone 1 with arylhydrazine derivatives gave the expected mixture of [(arylhydrazinyl)alkyl]quinazolinones 5 and 6 , besides a small amount of 2 and 3 (Scheme 3). The tandem hydroformylation/reductive amination reaction of 1 with different amines gave the quinazolinone derivatives 7 – 10 . Compound 10 was used to prepare the chalcones 11a and 11b and pyrazoloquinazolinones 12a and 12b (Scheme 4).  相似文献   

6.
A simple and facile method for the synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones through the direct cyclocondensation of one‐pot three‐component cyclocondensation of isatoic anhydride, ammonium acetate (or primary amines) and aldehydes; and anthranilamide and aldehydes using silica supported ferric chloride (SiO2‐FeCl3) as catalyst under solvent‐free conditions is described.  相似文献   

7.
We have developed a one‐pot procedure for the preparation of N,N‐disubstituted (Z)‐4‐(halomethylidene)‐4H‐3,1‐benzothiazin‐2‐amines 3 from 2‐(2,2‐dihaloethenyl)phenyl isothiocyanates 1 , easily accessible from known 2‐(2,2‐dihaloethenyl)benzenamines by a three‐step sequence, and secondary amines. Thus, the isothiocyanates 1 react with secondary amines to afford the corresponding thiourea derivatives, of which the treatment with NaH provides the desired products.  相似文献   

8.
An efficient synthesis of 3‐alkyl‐3,4‐dihydro‐4‐thioxobenzoquinazolin‐2(1H)‐ones 3 has been accomplished in two steps and in satisfactory yields from 1‐bromo‐2‐fluorobenzenes 1 . Thus, the reaction of 1‐fluoro‐2‐lithiobenzenes, generated by the Br/Li exchange between 1 and BuLi, with alkyl isothiocyanates, gives N‐alkyl‐2‐fluorobenzothioamides 2 , which, in turn, react with a series of isocyanates in the presence of NaH to give the desired products 3 .  相似文献   

9.
2,3‐Dihydroquinazolin‐4(1H)‐one derivatives were synthesized via a one‐pot, three component reaction of isatoic anhydride and an aromatic aldehyde with ammonium acetate or primary amine catalyzed by silica‐bonded S‐sulfonic acid in ethanol at 80°C. The reaction work‐up is simple and the catalyst is easily separated from the products by filtration. The heterogeneous catalyst was recycled for ten runs upon the condensation reaction of isatoic anhydride and 4‐chlorobenzaldehyde with ammonium acetate without losing its catalytic activity.  相似文献   

10.
A new one‐step synthesis of highly substituted thiophen‐2(3H)‐one derivatives was developed. 2‐Aryl‐1‐(morpholin‐4‐yl)ethanethiones were reacted with 2‐chloro‐2‐phenylacetyl chloride in DMF in the presence of a base to give the title compounds in moderate‐to‐good yields.  相似文献   

11.
We report the efficient preparation of furo[2,3‐d]pyridazin‐4(5H)‐one and its N‐substituted derivatives starting from methyl 2‐methylfuran‐3‐carboxylate. The Me group was converted to the aldehyde group, which was then condensed with hydrazine derivatives. Then, the ester functionalities were hydrolyzed to the corresponding acids, followed by treatment with SOCl2 to give N‐substituted furopyridazinone derivatives.  相似文献   

12.
A simple synthesis of 2‐hydrazinylidene‐3‐hydroxy‐4H‐furo[3,2‐c]pyran‐4‐ones is described. A mixture of (isocyanoimino)(triphenyl)phosphorane, an aromatic aldehyde, and dehydroacetic acid (=3‐acetyl‐2‐hydroxy‐6‐methyl‐4H‐pyran‐4‐one) undergo a 1 : 1 : 1 addition reaction under mild conditions to afford the title compounds in excellent yields.  相似文献   

13.
使用三氯化铟在乙醇中回流的条件下催化不同的靛红衍生物与4-羟基脯氨酸反应,以较高的产率(83-99%)和纯度合成得到了相应的产物3-(1-吡咯基)吲哚-2-酮化合物,并对这个反应做了一个比较全面系统的研究.  相似文献   

14.
Fe3O4–Schiff base of Cu(II) is found to be a recyclable and heterogeneous catalyst for the rapid and efficient synthesis of various 2,3‐dihydroquinazolin‐4(1H)‐one derivatives from the two‐component condensation of 2‐aminobenzamide and an aldehyde. This reaction is simple, green and cost‐effective. Separation and recycling can also be easily done by magnetic decantation of the Fe3O4 nanoparticles with an external magnet. The prepared catalyst was characterized using thermogravimetry, Fourier transform infrared spectroscopy, vibrating sample magnetometry, inductively coupled plasma analysis, X‐ray diffraction and scanning electron microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The structures of the main products resulting from photocyclodimerization of the title compound 2 and of other 3‐methyl‐substituted ‘oxacyclohex‐2‐en‐1‐ones’ (=dihydropyranones) were determined by X‐ray crystallography. In connection, the 13C‐NMR chemical shifts of the cyclobutane C‐atoms of these dimers allow a clear differentiation between head‐to‐head and head‐to‐tail regioisomers, all structurally related to those of isophorone ( 1 ).  相似文献   

16.
17.
Several quinazoline‐2(1H),4(3H)‐dione derivatives were synthesized from pyrimidine‐2(1H),4(3H)‐dione derivative.  相似文献   

18.
The synthesis of α‐benzamido‐α‐benzyl lactones 23 of various ring size was achieved either via ‘direct amide cyclization’ by treatment of 2‐benzamido‐2‐benzyl‐ω‐hydroxy‐N,N‐dimethylalkanamides 21 in toluene at 90 – 110° with HCl gas or by ‘ring transformation’ of 4‐benzyl‐4‐(ω‐hydroxyalkyl)‐2‐phenyl‐1,3‐oxazol‐5(4H)‐ones under the same conditions. The precursors were obtained by C‐alkylations of 4‐benzyl‐2‐phenyl‐1,3‐oxazol‐5(4H)‐one ( 15 ) with THP‐ or TBDMS‐protected ω‐hydroxyalkyl iodides. Ring opening of the THP‐protected oxazolones by treatment with Me2NH followed by deprotection of the OH group gave the diamides 21 , whereas deprotection of the TBDMS series of oxazolones 25 with TBAF followed by treatment with HCl gas led to the corresponding lactones 23 in a one‐pot reaction.  相似文献   

19.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

20.
The base catalyzed intramolecular nucleophilic cyclization of 1‐(2‐haloaroyl)‐3‐aryl thioureas ( 1a‐i ), in the presence of DMF afforded the 1‐aryl‐2‐thioxo‐2,3‐dihydro‐1H‐quinazolin‐4‐ones ( 2a‐i ). The structures were confirmed by spectroscopic data, elemental analyses and in case of the 2c by single crystal X‐ray diffraction data. The mechanistic studies support an intramolecular nucleophilic substitution (SNAr mechanism) rather than intramolecular aromatic substitution (SRN1 mechanism).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号