首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We prove that for every prime number p and odd m>1, as s→∞, there are at least w face 2‐colorable triangular embeddings of Kw, w, w, where w = m·ps. For both orientable and nonorientable embeddings, this result implies that for infinitely many infinite families of z, there is a constant c>0 for which there are at least z nonisomorphic face 2‐colorable triangular embeddings of Kz. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
We prove that, for a certain positive constant a and for an infinite set of values of n, the number of nonisomorphic triangular embeddings of the complete graph Kn is at least nan2. A similar lower bound is also given, for an infinite set of values of n, on the number of nonisomorphic triangular embeddings of the complete regular tripartite graph Kn,n,n.  相似文献   

3.
    
We prove that, with the single exception of the 2‐group C, the Cayley table of each Abelian group appears in a face 2‐colorable triangular embedding of a complete regular tripartite graph in an orientable surface. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 71–83, 2010  相似文献   

4.
    
A certain recursive construction for biembeddings of Latin squares has played a substantial role in generating large numbers of nonisomorphic triangular embeddings of complete graphs. In this article, we prove that, except for the groups and C 4 , each Latin square formed from the Cayley table of an Abelian group appears in a biembedding in which the second Latin square has a transversal. Such biembeddings may then be freely used as ingredients in the recursive construction. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 20:81‐88, 2012  相似文献   

5.
    
Three recursive constructions are presented; two deal with embeddings of complete graphs and one with embeddings of complete tripartite graphs. All three facilitate the construction of 2) non‐isomorphic face 2‐colourable triangulations of Kn and Kn,n,n in orientable and non‐orientable surfaces for values of n lying in certain residue classes and for appropriate constants a. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 87–107, 2002  相似文献   

6.
By an extended triangle, we mean a loop, a loop with an edge attached (known as a lollipop), or a copy of K 3 (known as a triangle). In this paper, we completely solve the problem of decomposing the graph (λK υ )+ into extended triangles for all possible number of loops. Dedicated to Professor Alex Rosa on the occasion of his 70th birthday  相似文献   

7.
    
Lindner's conjecture that any partial Steiner triple system of order u can be embedded in a Steiner triple system of order v if and is proved. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 63–89, 2009  相似文献   

8.
    
It was proved in 2009 that any partial Steiner triple system of order u has an embedding of order v for each admissible . This result is best possible in the sense that, for each , there exists a partial Steiner triple system of order u that does not have an embedding of order v for any . Many partial Steiner triple systems do have embeddings of orders smaller than , but much less is known about when these embeddings exist. In this paper, we detail a method for constructing such embeddings. We use this method to show that each member of a wide class of partial Steiner triple systems has an embedding of order v for at least half (or nearly half) of the orders for which an embedding could exist. For some members of this class we are able to completely determine the set of all orders for which the member has an embedding.  相似文献   

9.
A Steiner triple system (briefly ST) is in 1-1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24; C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147-181]. It is well known that for each n≡1 or 3 (mod 6) there is a planar squag of cardinality n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300]. Quackenbush expected that there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187-1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag. The first author has constructed a semi-planar squag of cardinality 3n for all n>3 and n≡1 or 3 (mod 6) [M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13-27]. In fact, this construction supplies us with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction as n→3n for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. Consequently, we may say that there are semi-planar (or semi-planar ) for each positive integer m and each n≡1 or 3 (mod 6) with n>3 having only medial subsquags at most of cardinality 3ν (sub-) for each ν∈{1,2,…,m+1}.  相似文献   

10.
The looseness of a triangular embedding of a complete graph in a closed surface is the minimum integer m such that for every assignment of m colors to the vertices of the embedding (such that all m colors are used) there is a face incident with vertices of three distinct colors. In this paper we show that for every p?3 there is a nonorientable triangular embedding of a complete graph with looseness at least p.  相似文献   

11.
    
It is shown that there is a function g on the natural numbers such that a partial Steiner triple system U on u points can be embedded in a Steiner triple system V on ν points, in such a way that all automorphisms of U can be extended to V, for every admissible ν satisfying ν > g(u). We find exponential upper and lower bounds for g. © 2005 Wiley Periodicals, Inc. J Combin Designs.  相似文献   

12.
Deciding whether an arbitrary partial commutative quasigroup can be completed is known to be NP-complete. Here, we prove that it remains NP-complete even if the partial quasigroup is constructed, in the standard way, from a partial Steiner triple system. This answers a question raised by Rosa in [A. Rosa, On a class of completable partial edge-colourings, Discrete Appl. Math. 35 (1992) 293-299]. To obtain this result, we prove necessary and sufficient conditions for the existence of a partial Steiner triple system of odd order having a leave L such that E(L)=E(G) where G is any given graph.  相似文献   

13.
We give a characterization of a current assignment on the bipartite Möbius ladder graph with 2n+1 rungs. Such an assignment yields an index one current graph with current group Z12n+7 that generates an orientable face 2-colorable triangular embedding of the complete graph K12n+7 or, equivalently, an orientable biembedding of two cyclic Steiner triple systems of order 12n+7. We use our characterization to construct Skolem sequences that give rise to such current assignments. These produce many nonisomorphic orientable biembeddings of cyclic Steiner triple systems of order 12n+7.  相似文献   

14.
    
We define a Mendelsohn triple system (MTS) of order coprime with 3, and having multiplication affine over an abelian group, to be affine, nonramified. By exhibiting a one‐to‐one correspondence between isomorphism classes of affine MTS and those of modules over the Eisenstein integers, we solve the isomorphism problem for affine, nonramified MTS and enumerate these isomorphism classes (extending the work of Donovan, Griggs, McCourt, Opr?al, and Stanovský). As a consequence, all entropic MTSs of order coprime with 3 and distributive MTS of order coprime with 3 are classified. Partial results on the isomorphism problem for affine MTS with order divisible by 3 are given, and a complete classification is conjectured. We also prove that for any affine MTS, the qualities of being nonramified, pure, and self‐orthogonal are equivalent.  相似文献   

15.
    
The first paper in this series initiated a study of Sylow theory for quasigroups and Latin squares based on orbits of the left multiplication group. The current paper is based on so‐called pseudo‐orbits, which are formed by the images of a subset under the set of left translations. The two approaches agree for groups, but differ in the general case. Subsets are described as sectional if the pseudo‐orbit that they generate actually partitions the quasigroup. Sectional subsets are especially well behaved in the newly identified class of conflatable quasigroups, which provides a unified treatment of Moufang, Bol, and conjugacy closure properties. Relationships between sectional and Lagrangean properties of subquasigroups are established. Structural implications of sectional properties in loops are investigated, and divisors of the order of a finite quasigroup are classified according to the behavior of sectional subsets and pseudo‐orbits. An upper bound is given on the size of a pseudo‐orbit. Various interactions of the Sylow theory with design theory are discussed. In particular, it is shown how Sylow theory yields readily computable isomorphism invariants with the resolving power to distinguish each of the 80 Steiner triple systems of order 15.  相似文献   

16.
    
In this paper, we present a conjecture that is a common generalization of the Doyen–Wilson Theorem and Lindner and Rosa's intersection theorem for Steiner triple systems. Given u, v ≡ 1,3 (mod 6), u < v < 2u + 1, we ask for the minimum r such that there exists a Steiner triple system such that some partial system can be completed to an STS , where |?| = r. In other words, in order to “quasi‐embed” an STS(u) into an STS(v), we must remove r blocks from the small system, and this r is the least such with this property. One can also view the quantity (u(u ? 1)/6) ? r as the maximum intersection of an STS(u) and an STS(v) with u < v. We conjecture that the necessary minimum r = (v ? u) (2u + 1 ? v)/6 can be achieved, except when u = 6t + 1 and v = 6t + 3, in which case it is r = 3t for t ≠ 2, or r = 7 when t = 2. Using small examples and recursion, we solve the cases v ? u = 2 and 4, asymptotically solve the cases v ? u = 6, 8, and 10, and further show for given v ? u > 2 that an asymptotic solution exists if solutions exist for a run of consecutive values of u (whose required length is no more than v ? u). Some results are obtained for v close to 2u + 1 as well. The cases where ≈ 3u/2 seem to be the hardest. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
We determine necessary and sufficient conditions for the existence of a quasigroup of order n having an automorphism consisting of a single cycle of length m and nm fixed points, and having any combination of the additional properties of being idempotent, unipotent, commutative, semi-symmetric or totally symmetric. Quasigroups with such additional properties and symmetries are equivalent to various classes of triple systems.  相似文献   

18.
Connections of some groupoid identities with the quasigroup and Latin square properties are investigated using combinatorial methods.  相似文献   

19.
    
We provide two new constructions for pairs of mutually orthogonal symmetric hamiltonian double Latin squares. The first is a tripling construction, and the second is derived from known constructions of hamilton cycle decompositions of when is prime.  相似文献   

20.
Given a Steiner triple system , we say that a cubic graph G is -colourable if its edges can be coloured by points of in such way that the colours of any three edges meeting at a vertex form a triple of . We prove that there is Steiner triple system of order 21 which is universal in the sense that every simple cubic graph is -colourable. This improves the result of Grannell et al. [J. Graph Theory 46 (2004), 15–24] who found a similar system of order 381. On the other hand, it is known that any universal Steiner triple system must have order at least 13, and it has been conjectured that this bound is sharp (Holroyd and Škoviera [J. Combin. Theory Ser. B 91 (2004), 57–66]). Research partially supported by APVT, project 51-027604. Research partially supported by VEGA, grant 1/3022/06.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号