共查询到20条相似文献,搜索用时 15 毫秒
1.
Ting‐Ting Wang Ji‐Min Xie Prof. Dr. Chang‐Kun Xia Yun‐Long Wu Jun‐Jie Jing 《无机化学与普通化学杂志》2010,636(8):1580-1584
Two manganese(III)‐dicyanamide compounds, [Mn(5‐Brsalen)(dca)] · CH3OH ( 1 ) and [Mn(3‐Meosalphen)(dca)(H2O)] ( 2 ) (dca = dicyanamide anion, [N(CN)2]–), were synthesized and characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray structure analysis, and cyclic voltammetry. The structure of complex 1 is an infinite zigzag chain of hexacoordinate MnIII ions, in which the adjacent manganese atoms are connected by dca in μ1,5‐bridging mode. The molecular structure of complex 2 consists of a hexacoordinate MnIII atom, which generates a slightly distorted octahedral arrangement, and a dimer structure is formed by intermolecular hydrogen bonding interactions. The electrochemical properties of the two complexes were measured by cyclic voltammetry. 相似文献
2.
Two manganese(II) bipyridine carboxylate complexes, [(bipy)2MnII(μ‐C2H5CO2)2MnII(bipy)2}2](ClO4)2 ( 1 ), and [MnII(ClCH2CO2)(H2O)(bipy)2]ClO4 · H2O ( 2 ) were prepared. 1 crystallizes in the triclinic space group P 1 with a = 8.604(3), b = 12.062(3), c = 13.471(3) Å, α = 112.47(2), β = 93.86(2), γ = 92.87(3)°, V = 1211.1(6) Å3 and Z = 1. In the dimeric, cationic complex with a crystallographic center of symmetry two 2,2′‐bipyridine molecules chelate each manganese atom. These two metal fragments are then bridged by two propionato groups in a syn‐anti conformation. The Mn…Mn distance is 4.653 Å. 2 crystallizes in the monoclinic space group P21/c with a = 9.042(1), b = 13.891(1), c = 21.022(3) Å, β = 102.00(1)°, V = 2569.3(5) Å3 and Z = 4. 2 is a monomeric cationic complex in which two bipyridine ligands chelate the manganese atom in a cis fashion. A chloroacetato and an aqua ligand complete the six‐coordination. Only in 2 is the intermolecular packing controlled by weak π‐stacking besides C–H…π contacts between the bipyridine ligands. 相似文献
3.
Ke‐Qiang Ding 《中国化学会会志》2010,57(6):1309-1314
For the first time, cobalt particles were electrodeposited on the surface of manganese oxides by cyclic voltammetry (CV) from an aqueous solution of 0.1 M Na2SO4 containing 5 mM CoSO4, and then the samples obtained were characterized by scanning electron microscopy (SEM) and energy dispersive X‐ray analysis (EDAX), respectively. And then, the as‐prepared Co/MnO2‐coated graphite electrode was employed to the oxygen reduction reaction (ORR). Interestingly, the reduction peak potential of ORR on a Co/MnO2‐modified graphite electrode was positively shifted for about 100 mV as compared with that on a MnO2‐modified graphite electrode, indicating that the electrocatalysis of Co/MnO2 composite towards ORR is superior to that of pure MnO2. 相似文献
4.
Electrochemical and Spectroelectrochemical Analysis of 4‐(4‐(5‐Phenyl‐1,3,4‐oxadiazole‐2‐yl)phenoxy)‐Substituted Cobalt(II), Lead(II) and Metal‐Free Phthalocyanines 下载免费PDF全文
Electrochemical and spectroelectrochemical analyses of 4‐(4‐(5‐phenyl‐1,3,4‐oxadiazole‐2‐yl)phenoxy)‐substituted metal‐free phthalocyanine ( H2Pc ( 1 )) and metallated phthalocyanines ( PbPc ( 2 ) and CoPc ( 3 )) were performed in solution. Voltammetric characterizations of the phthalocyanine complexes were investigated by using cyclic voltammetry and square wave voltammetry techniques. CoPc ( 3 ) gave common metal and ring based electron transfer reactions; however they split due to the aggregation. Although PbPc ( 2 ) illustrated reversible reduction processes during the voltammetric measurements, it was de‐metallized and thus turned to the metal free phthalocyanine during repetitive voltammetric cycles and in situ spectroelectrochemical measurements. 相似文献
5.
Ke‐Qiang Ding 《中国化学会会志》2009,56(5):891-897
The composite of manganese dioxide‐polyaniline (MnO2‐PANI) was successfully prepared by cyclic voltammetry (CV) from a 0.5 M H2SO4 solution containing 0.2 M aniline and 0.5 M MnSO4. Scanning electron microscopy (SEM) images revealed that cauliflower like manganese dioxides entangled with PANI were generated. The spectra obtained from UV‐vis spectrophotometry (UV‐vis) and Fourier transform infrared spectrometry (FTIR) strongly demonstrated that this novel composite was composed by MnO2 and PANI, and also there was an interaction between MnO2 and PANI. Then, for the first time, this resultant composite was modified on a graphite electrode and employed in the oxygen reduction reaction (ORR), subsequently, the obtained cyclic voltammograms (CVs) verified that ORR could proceed on this resultant composite of MnO2‐PANI. Lastly, the possible catalysis mechanism of MnO2‐PANI towards ORR was proposed based on the results we acquired. Developing a novel substrate on which ORR could proceed is the main contribution of this work. 相似文献
6.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings. 相似文献
7.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom. 相似文献
8.
Solvothermal reaction of [MnCl2(terpy)] with elemental As and Se at a 1:1:2 molar ratio in H2O/trien (10:1) at 150 °C affords the linear trimanganese(II) complex [{Mn(terpy)}3(μ‐AsSe4)2] ( 1 ). The tridentate [AsSe2(Se2)]3? anions of 1 chelate the terminal {Mn(terpy)}2+ fragments and bridge these through their remaining Se atom to the central {Mn(terpy)}2+ moiety. Weak interactions of Mn1···Se and Mn3···Se bonds with length 2.914(7) and 3.000(7) Å link the molecules of 1 into infinite chains. Treatment of [MnCl2(cyclam)]Cl with As and Se at a 1:1:2 molar ratio in superheated H2O/CH3OH (1:1) at 150 °C yields the dinuclear complex [{Mn(cyclam)}2 (μ‐As2Se6)] ( 2 ), whose novel [(AsSe2)2(μ‐Se2)]4? ligands bridge the MnII atoms in a μ‐1κ2Se1, Se2: 2κ2Se5,Se6 manner. 相似文献
9.
Dariusz Wyrzykowski Iwona Inkielewicz‐Stępniak Justyna Czupryniak Dagmara Jacewicz Tadeusz Ossowski Michal Woźniak Lech Chmurzyński 《无机化学与普通化学杂志》2013,639(10):1795-1799
The reactivity of superoxide free radicals (O2 · –) generated electrochemically towards the oxydiacetate metal complexes, namely [VO(oda)(H2O)2], [Co(oda)(H2O)2] · H2O, and [Ni(oda)(H2O)3] · 1.5H2O (oda = oxydiacetate) was examined by cyclic voltammetry. The measurements were carried out in DMSO solution using a platinum electrode. Based on the height of the anodic peak Ea that corresponds to electrochemical oxidation O2 · – → O2 + e, in the absence and in the presence of the compounds in the mixture, their O2 · – scavenge ability was assessed. The influence of the type of the complex was briefly discussed. H2O2 was used to induce cellular injury in a mouse hippocampal cell line (HT22). The cytoprotection of chemical compounds was tested at the mitochondrial (MTT test) and plasma membrane level (LDH leakage). Dose‐dependent effect (10 and 100 μM of the complex) of investigated compounds was observed. 相似文献
10.
Wayne E. Buschmann Atta M. Arif Joel S. Miller 《Angewandte Chemie (International ed. in English)》1998,37(6):781-783
A place in the sun for solutions of [(Ph3P)2N]2[Mn(CN)6] provides—by photochemical degradation—[MnII(CN)4]2− ions, the only homoleptic cyanide complex ion that is high spin (structure depicted on the right). Magnetic measurements indicate a high-spin 6A1 ground state (S=5/2), and the cyanide ligands are virtually entirely σ donors, without significant binding contributions from d–π* back-bonding. 相似文献
11.
[Mn(H2O)4(C4N2H4)][C6H4(COO)2] – An One‐Dimensional Coordination Polymer with Chain‐like [Mn(H2O)4(C4N2H4)]n2n+ Polycations Orthorhombic single crystals of [Mn(H2O)4(C4N2H4)][C6H4(COO)2] have been prepared in aqueous solution at room temperature. Space group Imm2 (no. 44), a = 1039.00(6) pm, b = 954.46(13) pm, c = 737.86(5) pm, V = 0.73172(12) nm3, Z = 2. Mn2+ is coordinated in a octahedral manner by four water molecules and two nitrogen atoms stemming from the pyrazine molecules (Mn–O 215.02(11) pm; Mn–N 228.7(4), 230.7(4) pm). Mn2+ and pyrazine molecules form chain‐like polycations with [Mn(H2O)4(C4N2H4)]n2n+ composition. The positive charge of the polycationic chains is compensated for by phthalate anions, which are accomodated between the chains. The phthalate anions are linked by hydrogen bonds to the polycationic chains. Thermogravimetric analysis in air revealed that the loss of water of crystallisation and pyrazine occurs in two steps between 130 and 245 °C. The resulting sample was stable up to 360 °C. Further decomposition yielded Mn2O3. 相似文献
12.
Manfredo Hörner Prof. Dr. Aline Joana Rolina Wohlmuth Alves dos Santos 《无机化学与普通化学杂志》2007,633(7):971-973
3‐(4‐carboxyphenyl)‐1‐methyltriazene N‐oxide reacts with KOH in methanol/pyridine to give {K[O2C‐C6H4‐N(H)NN(CH3)O]·4H2O}n, Potassium‐3‐(4‐carboxylatophenyl)‐1‐methyltriazene N‐oxide). The terminal carboxylato group of the anion does not interact with the cation. In the crystal lattice of {K(C8H8N3O3)·4H2O}n each three of the four water molecules interact with two potassium cations, every K+ ion being the centre of six bridging K···O interactions. Potassium cations interact further with the terminal N‐oxigen atom of single [C8H8N3O3]? anions achieving two parallel {C8H8N3O3?K+}n chains, which are linked through water molecules. The resulting polymeric, one‐dimensional chain, is operated by a screw axis 21 parallel to the crystallographic direction [010], along and equidistant to the K+ centres. The coordination of the K+ centres involves a distortion of the boat conformation of elementary sulfur (S8) with the ideal C2v symmetry. 相似文献
13.
14.
15.
Andrew J. Gaunt Iain May David Collison Madeleine Helliwell 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(7):i65-i66
The crystal structure of the title compound, nonaammonium (arsenic decatungstido)(arsenic heptatungstido)diaqua‐μ‐hydroxo‐(hydroxyarsenido)dizirconium hexacosahydrate, which was obtained from the reaction of [NaAs4W40O140]27− with ZrIV, has been determined. The anionic complex consists of two hydroxyl‐bridged seven‐coordinate capped trigonal‐prismatic zirconium ions, which are bonded to an [AsW10O36]9− anion and to an [AsW7O28]11− anion that has two {AsOH}2+ capping units. The asymmetric unit contains half of the complex, with one crystallographically independent Zr atom. Crystallographic m symmetry imposed by the monoclinic C2/m space group gives rise to the asymmetric unit comprising half of the complex with one crystallographically independent Zr atom. 相似文献
16.
[Mn(H2O)2]4[HNC5H4(COO)]2[C6H2(COO)4]2·4H2O — A Three‐dimensional Coordination Polymer with Guest Water Molecules in Channel‐like Voids Single crystals of [Mn(H2O)2]4[HNC5H4(COO)]2[C6H2(COO)4]2·4H2O have been prepared in aqueous solution at 55 °C. Space group P1¯ (no. 2), a = 999.7(2), b = 1314.4(2), c = 1645.8(2) pm, α = 101.096(8)°, β = 92.796(14)°, γ = 96.03(2)°, V = 2.1053(5) nm3, Z = 2. There are four unique Mn2+ which are coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms of the pyromellitate anions and one oxygen atom of isonicotinic acid (Mn—O 208.6(2) — 227.3(3) pm). The connection of Mn2+ and [C6H2(COO)4]4— yields a three‐dimensional coordination polymer with two different, channel‐like voids extending parallel to [110]. The first channel accomodates water molecules, the second channel is filled by isonicotinic acid molecules. Thermogravimetric analysis in air revealed that the loss of water of crystallisation occurs in two steps between 97 and 200 °C. The dehydrated sample was stable between 200 and 340 °C. Further decomposition yielded Mn3O4. 相似文献
17.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8. 相似文献
18.
Daniel Pursche Michael U. Triller Nicole Reddig Annette Rompel Bernt Krebs 《无机化学与普通化学杂志》2003,629(1):24-28
The trinuclear manganese(II) complex [Mn3(ppi)2(μ‐OAc)4(H2O)2]·2MeOH ( 1 ) (Hppi = 2‐pyridylmethyl‐2‐hydroxyphenylimine) is prepared by dissolving two equivalents of Hppi (from the Schiff Base reaction of aminophenol and pyridine‐2‐carboxaldehyde) in acetonitrile and three equivalents of Mn(OAc)2·4H2O in methanol and combining both solutions. The resulting red precipitate was recrystallized to yield red crystals suitable for single crystal X‐ray diffraction. Compound 1 crystallizes in the triclinic space group P1¯ (no. 2), with a = 9.691(2), b = 10.683(2), c = 11.541(2)Å, α = 63.19(3)°, β = 67.47(3)°, γ = 69.11(3)°, V = 960.2(3)Å3, and Z = 1. The binding mode of carboxylate in 1 represents a model for a transition state between symmetric syn, syn, anti‐μ2‐carboxolato‐O‐ and syn, anti‐μ2‐carboxylato‐O, O′‐coordination. Therefore a rare binding mode for the phenomenon of the carboxylate shift is realized. Furthermore the complex is stabilized by a distinctive hydrogen bonding pathway. 相似文献
19.
20.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4. 相似文献