首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel complexes CpFe(CO)(COR)P(C6H5)2NR'R* with Cp = C5H5,C9H7 (indenyl); R = CH3, C2H5, CH(CH3)2, CH2C6H5;R` = H, CH3, C2H5, CH2C6H5 and R* = (S)-CH(CH3)(C6H5), have been synthesized by reaction of CpFe(CO)2R wiht P(C6H5)2NR`R* and characterized analytically as well as spectroscopically. The pairs of diastereoisomers RS/SS have been separated by preparative liquid chromatography and fractional crystallization, respectively. The optically pure complexes (+)436- und ()436-CpFe(CO)(COR)P(C6H5)2NR`R* are configurationally stable at room temperature. At higher temperatures they equilibrate with CpFe(CO)2R and epimerize with respect to the Fe configuration.  相似文献   

2.
In the reaction of C5H5 Co(C3F7)(CO)I with the Schiff base NN′, derived from S-(-)-?-phenylethylamine and pyridine carbaldehyde-2, the salt [C5H5Co(C3F7)NN′]+ I? (Ia,b) is formed, which can be transformed to [C5H5 Co(C3F7)NN′]+ PF6? (IIa,b). The sodium salt Na+ [NN″]? of the Schiff base, derived from S-(-)-α-phenylethylamine and pyrrol carbaldehyde-2, in the reaction with C5H5 C0(C3F7)(CO)I yields the neutral complex C5H5 Co(C3F7)NN″ (IIIa,b). The diastereoisomeric pairs IIa,b and IIIa,b are separated by fractional crystallisation and chromatography respectively into the optically pure components which differ in their 1H NMR spectra. The IR, UV, CD, mass spectra and optical rotations of the new compounds IIa, IIb, IIIa and IIIb are compared.  相似文献   

3.
The reaction of Ni(C5H5)2 and Ni(C5H4COOCH3)2 with the acetylene (?)-(R)-C6H5CCCONHCH(CH3)(C6H5)(C6H5), “CC′”, yields tetrahedral Ni2C2 clusters. Besides the compounds with two identical Ni corners (Ni2CC′ types) also compounds with two different Ni corners (NiNi′CC′ types) are formed. These consist of two diastereomers which, for a given (R)-configuration in the acid amide substituent, differ only in the cluster chirality. They are separated chromatographically and turn out to be configurationally stable with respect to a change of the cluster chirality.  相似文献   

4.
Reaction-solution calorimetric studies involving the complexes Ti[η5-C5(CH3)5]2-(CH3)2, Ti[η5-C5(CH3)5]2(CH3), Ti[η5-C5(CH3)5]2(C6H5), Ti[η5-C5(CH3)5]2Cl2, and Ti[η5-C5(CH3)5]2Cl, have enabled derivation of titaniumcarbon and titaniumchlorine stepwise bond dissociation enthalpies in these species.  相似文献   

5.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

6.
η5C5H5Ti(CH3)Cl2 and η5-C5H5Ti(C2H5TiCl2 have been synthesized. The reactivity of the methyl compound is much greater than that of the closely related sandwich compound, (η5-C5H5)2Ti(CH3)Cl, but the thermal stability is comparable.  相似文献   

7.
Reaction of (C5H5)2Ti(CH3)2 or (CH3)4C2(C5H4)2Ti(CH3)2 with pyridine-2,6-dicarboxylic acid (dipicolinic acid) yields titanocene dipicolinate derivatives. The molecular structure of (C5H5)2Ti dipicolinate is that of an axially symmetric, pentacoordinate titanocene derivative with two carboxyl oxygen atoms and the pyridine nitrogen atom as ligating atoms. Two identical chelate bite angles of only 71° make the dipicolinate ligand particularly suited to form a remarkably stable titanocene derivative with unprecedented pentacoordintae geometry.  相似文献   

8.
Polymerization tests were carried out in homogeneous systems on various substituted olefins CH2=CRZ (R = H or CH3; Z = CN, COOR, C6H5 or OCOR) with compounds of titanium (IV) Ti X4?x Yx (X and/or Y = Cl, OR, NR2, C5H5, OCH2 CF3, CH3, C6H5 …) or with the bimetallic complex CH3Ti(OR)3, Al(CH3)3. The activity of the initiator varies with the co-ordination environment of the titanium and to a considerable extent with the functional groups linked to the olefin.  相似文献   

9.
Two benzene centered tri- and tetracyclopentadienyl ligands C6H3(CH2C5H5)3-1,3,5 (1) and C6H2(CH2C5H5)4-1,2,4,5 (2) and their titanium complexes C6H3[CH2C5H4Ti(C5H5)Cl2]3-1,3,5 (3), C6H3[CH2C5H4Ti(C5H4CH3)Cl2]3-1,3,5 (4), as well as C6H2[CH2C5H4Ti(C5H5)Cl2]4-1,2,4,5 (5) were synthesized and characterized by mass and 1H NMR spectra. In the presence of methylaluminoxane (MAO), 3, 4 and 5 are efficient catalysts for ethylene polymerization in toluene. The influence of the polymerization conditions such as catalyst concentration, MAO/Ti molar ratio, polymerization time and temperature were investigated in detail. 3, 4 and 5 produce linear polyethylene (PE) with broad molecular weight distributions (MWD) and a little lower molecular weight.  相似文献   

10.
A reaction of Me3Al with 2,2′-methylene-p-chloro-bisphenol in Et2O yielded Me5Al3[OC6H3(Cl)CH2C6H3(Cl)O]2 (1). Compound 1 reacted with 2,2′-di(hydroxymethyl)biphenyl to form Me3Al3[OC6H3(Cl)CH2C6H3(Cl)O](OCH2C12H8CH2O)2 (2) bearing two kinds of diolate ligands. Compound 2 was structurally characterised.  相似文献   

11.
The stepwise reaction of Me2SiCl2 with K[C5H3 tBuMe‐3] or Li[C9H7] and then with K[C9H6CH2CH2‐ NMe2‐1] followed by double deprotonation with NaH or LiBu, yields the two dimethylsilicon bridged cyclopentadienyl‐indenyl and indenyl‐indenyl donor‐functionalized ligand systems K2[(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 1 ), and Li2[(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)] ( 2 ), respectively. Treatment of 1 with YCl3(THF)3, SmCl3(THF)1.77, TmI3(DME)3, and LuCl3(THF)3 gives the mixed ansa‐metallocenes [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LnX (X = Cl, Ln = Y ( 3 ), Sm ( 4 ), Lu ( 5 ); X = I, Ln = Tm ( 6 )), respectively. The reaction of 2 with LuCl3(THF)3 yields [(1‐C9H6)SiMe2(1‐C9H5CH2CH2NMe2‐3)]LuCl ( 7 ). Compound 4 reacts with LiMe to give the corresponding alkyl derivative [(C5H2 tBu‐3‐Me‐5)SiMe2(1‐C9H5CH2CH2NMe2‐3)]Sm(CH3) ( 8 ). The new complexes were characterized by elemental analyses, MS spectrometry, and NMR spectroscopy. The molecular structures of 5 and 6 were determined by single crystal X‐ray diffraction.  相似文献   

12.
C7H7Mo(CO)(PN)I (I) (PN  (S)(+)-(C6H5)2PN(CH3)CH(CH3)(C6H5)) is prepared in 90% yield by reaction of C7H7Mo(CO)2I and PN. The two diastereo-isomers Ia and Ib differing only in the Mo-configuration exhibit chemical shift differences of their C7H7 and CH3 signals. Ia and Ib can be separated by fractional crystallization. In solution Ia epimerizes with respect to the Mo configuration. The half lives in benzene for the equilibration Ia ? Ib are 5.5, 30, and 104 min at 60, 50, and 40°C, respectively. Phosphine exchange experiments show that the epimerization proceeds via PN dissociation.An X-ray structure analysis was carried out on a single crystal of Ia. The absolute configuration at Mo was determined to be (R).  相似文献   

13.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   

14.
The carboxylate compounds [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})(O2CCH2SXyl)2] (2; Xyl = 3,5‐Me2C6H3) and [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})(O2CCH2SMesl)2] (3; Mes 1 = 2,4,6‐Me3C6H2) were synthesized by the reaction of [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})Cl2] (1) with 2 equivalents of xylylthioacetic acid or mesitylthioacetic acid, respectively. Compounds 2 and 3 were characterized by spectroscopic methods. The cytotoxic activity of 1–3 was tested against human tumor cell lines from four different histogenic origins—8505C (anaplastic thyroid cancer), DLD‐1 (colon cancer) and the cisplatin sensitive A253 (head and neck cancer) and A549 (lung carcinoma)—and compared with those of the reference complex [Ti(η5‐C5H5)2Cl2] (R1) and cisplatin. Surprisingly, the cytotoxic activities of the carboxylate derivatives were lower than those of their corresponding dichloride analogue (1). However, complexes 1–3 were more active than titanocene dichloride against all the studied cells with the exception of complex 2 against A253 and A549 cell lines. DNA‐interaction tests were also carried out. Solutions of all the studied complexes were treated with different concentrations of fish sperm DNA, observing modifications of the UV spectra with intrinsic binding constants of 2.99 × 105, 2.45 × 105, and 2.35 × 105 M ?1 for 1–3. Structural studies based on density functional theory calculations of 2 and 3 were also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Mono-demethylation of Cp2Ti(CH3)2 in dichloromethane with 1 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7) and [η5-(C5H4COOH)]W(CO)3CH3 (8) gives Cp2Ti(CH3){[OC(O)C5H4]Cr(CO)2NO} (9), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2Cl} (10), Cp2Ti(CH3){[OC(O)C5H4]Cr(NO)2I} (11) and Cp2Ti(CH3){[OC(O)C5H4]W(CO)3CH3} (12), respectively. The structure of 10 has been solved by X-ray diffraction studies. One of the nitrosyl groups is located at the site away from the exocyclic carbonyl carbon of the Cp(Cr) ring with twist angle of 178.1°. All the data reveals that Cp2Ti(CH3)- is a strong electron-donating group. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) in compounds 5-12, using HetCOR NMR spectroscopy, as compared with the NMR data of their ferrocene analogues. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and those of 10 are compared with the calculations via density functional B3LYP correlation- exchange method.  相似文献   

16.
An X-ray study of (C5H5)[(CH3)5C5]TiCl2 has shown that the coordination of ligands in the molecule is that of a distorted tetrahedron with two staggered five-membered rings π-bonded to titanium [(TiC)av. 2.40 »]. The cyclopentadienyl rings are tilted at an angle of 130° and the two σ-bonded Cl atoms are separated by an average distance of 2.33 ». The ClTiCl bond angle is equal to 94.8°.  相似文献   

17.
The reaction of methyl chloride and methyl bromide with white phosphorus is studied under a variety of conditions, and the conditions giving a high yield of tetramethylphosphonium chloride and bromide are established. Thermal decomposition of [(CH3)4P]+Cl? gives (CH3)3P and CH3Cl, and alkaline decomposition of [(C4H9)3(C12H25)P]+Cl? gives C4H10 and (C4H9)2(C12H25)P?O.  相似文献   

18.
[HN(CH2CH2Cl)2CH2CH(CH3)Cl]Cl (V). [HN{CH2CH(CH3)Cl}3]Cl (VII) and the 1,3,5-trithiacyclohexane derivative (CHS)3(CH2CH2Cl)3 (IX) react with NaAs(C6H5)2 in liquid ammonia to give N[CH2CH2As(C6H5)2]2CH2CH(CH3)As(C6H5)2 (VI). N[CH2CH(CH3)As(C6H5)2]3 (VIII) and (CHS)3[CH2CH2As(C6H5)2]3 (X). Treatment of VI with HI results, under elimination of benzene, almost quantitatively in the formation of [HN(CH2CH2AsI2)2CH2CH(CH2)AsI2]I (XI), which is recrystallized from THF as [HN(CH2CH2AsI2)2CH2CH(CH3)AsI2]I · THF (1/1) (XIa). All attempts to obtain homogeneous products by reaction of VIII or X with HI, such as [HN{CH2CH(CH3)AsI2}3]I and (CHS)3(CH2CH2AsI2)3, failed. With H2O/NH3 or H2S/N(C2H5)3 XIa forms the cryptands [N(CH2CH2)2CH2CH(CH3)]8(As4O4)6 (XII) or [N(CH2CH2)2CH2CH(CH3)]8(As4S4)6 (XIII), which also can be considered as spherands. All the new compounds are characterized, as far as possible, by their IR, Raman, 1H NMR and mass spectra.  相似文献   

19.
The thermal functions S0T, -(G0T-H0O)/T and (H0T-H0O) have been calculated from structural and spectroscopic data for the gaseous organometallics C5H5BeX (X = Cl, Br and BH4), C5H5MX3 (M = Ti and Ge; X = Cl, Br and I) and CH3TiX3 (X = Cl, Br and I). The rotational barriers of the C5H5 and CH3 groups have been evaluated and discussed.  相似文献   

20.
A series of cation–anion complexes derived by 2,2′-dipyridylamine (Hdpa) and carboxylate ligands with formulas [Ni(Hdpa)2(CH3COO)]Cl(CH3OH) (1), [Co(Hdpa)2(CH3COO)]Cl(CH3OH) (2), [Ni(Hdpa)2(CH3CH2CH2COO)]Cl (3), [Co(Hdpa)2(CH3CH2CH2COO)]Cl (4), [Ni(Hdpa)2(C6H5COO)]Cl (5), and [Co(Hdpa)2(C6H5COO)]Cl (6), were synthesized and characterized by IR, elemental analysis, MS(ESI), TG analysis, UV-Vis, and fluorescence spectra. X-ray single crystal structural analysis showed that the coordination geometries of metal ions in these complexes are similar and they are cation–anion species. The hydrogen-bonding structures are 1-D chains through the N–H···Cl bonds. There are weak stacking interactions between pyridine rings in 14, while there are no stacking interactions in 5 and 6. We have investigated the transesterification of phenyl acetate with methanol catalyzed by 16 under mild conditions; 14 are homogeneous catalysts while 5 and 6 are heterogeneous catalysts due to their poor solubility in methanol. Cobalt complexes exhibit higher catalytic activities than corresponding nickel complexes. Complex 4 is the best catalyst of these six complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号