首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper presents a numerical study of external electrical and magnetic effects on the formation of longitudinal vortices in natural convection flow over a heated horizontal plate. The criterion on the position marking on the onset of longitudinal vortices is defined in the present paper. The onset position characterized by the Grashof number depends on the Prandtl number, the wave number, the electric field parameter, and the magnetic field parameter. The flow is found more stable as the value of the magnetic field parameter increases. Moreover, the stabilizing effect is also found on the flow when the positive electric field parameter Ec is applied. The results of the present numerical prediction show reasonable agreement with the experimental data with zero magnetic field and electric field parameters in literature.  相似文献   

2.
Effect of ion‐slip current on the thermal instability in a boundary layer is studied. The criterion on the position marking the onset of longitudinal vortices is defined in the present paper. The results show that the onset position characterized by the Grashof number depends on the Prandtl number, the Reynolds number, the wave number, the Hall parameter, the ion‐slip parameter, and the Hartmann number. The flow becomes more stable as the magnetic field increases. However, the destabilizing effects are found on the flow when the Hall and ion‐slip currents are presented. The results of the present numerical prediction show reasonable agreement with the experimental data in the case of zero Hartmann number, ion‐slip parameter, and Hall parameter in the open literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Effect of magnetic field on the formation of longitudinal vortices in mixed convection flow over a rotating heated flat plate is presented. The onset position is characterized by the Grashof number, the rotational number, the Prandtl number, the Eckert number, the magnetic field parameter, and the wave number. Negative rotation (clockwise) and external magnetic field stabilize the boundary layer flow. On the contrary, positive rotation (anti-clockwise), the Eckert number, and the Prandtl number destabilize the flow. The numerical data show agreement with the experimental data with the case of zero Hartmann number in the literature.  相似文献   

4.
This paper presents a numerical study of magnetic effect on the formation of longitudinal vortices in a rotating laminar boundary layer. The criterion for the position marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the rotational Goertler number Gδ,rot, depends on the local rotation number, Reynolds number, the magnetic field parameter, the Prandtl number and the wave number. The results show that positive rotation destabilizes the flow. The flow is found to become more unstable to the vortex mode of instability as the value of magnetic field parameter M increases. The numerical data shows good agreement with the experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

  相似文献   

6.
毛洁  王彦利  王浩 《力学学报》2018,50(6):1387-1395
热核聚变反应堆液态金属包层应用中的一个重要问题是液态金属在导电管中流动和强磁场相互作用产生的额外的磁流体动力学压降.这种磁流体动力学压降远远大于普通水力学压降.美国阿贡国家实验室ALEX研究小组,对非均匀磁场下导电管中液态金属磁流体动力学效应进行了实验研究,其实验结果成为液态金属包层数值验证的标准模型之一.液态金属包层在应用中会受到不同方向的磁场作用,本文以ALEX的非均匀磁场下导电方管中液态金属管流实验中的一组参数为基础,保持哈特曼数、雷诺数和壁面电导率不变,采用三维直接数值模拟的方法,研究了外加磁场与侧壁之间的倾角对导电方管内液态金属流动的速度、电流和压降分布的影响.研究结果表明:沿流向相同横截面上的速度、电流以及压力分布均随磁场的倾斜而同向旋转.倾斜磁场均匀段,横截面上的高速区位于平行磁场方向的哈特曼层和平行层交叉位置,压力梯度随磁场倾角的增大先增大后减小.倾斜磁场递减段,在三维磁流体动力学效应作用下,横截面上的高速射流位置向垂直磁场方向偏移.磁场递减段的三维磁流体动力学压降随磁场倾角的增大而增大.随磁场倾斜,截面上的射流峰值逐渐减小,二次流增强,引发层流向湍流的转捩.   相似文献   

7.
磁场对液态金属流的制动效应   总被引:1,自引:0,他引:1  
研究在静磁场作用下;连铸坯中液态金属的流动,建立了二维数学模型并考虑了湍流的影响.采用数值分析方法分析了磁场对液态金属流股的制动效应.计算结果说明静磁场可以有效地减小流股速度并使其分散,同时使上升到液态金属液面的反转流减弱.随着哈特曼数增高和雷诺数的减小,磁场的制动效应增强.  相似文献   

8.
The MHD Couette flow of two immiscible fluids in a parallel plate channel in the presence of an applied electric and inclined magnetic field is investigated in the paper. One of the fluids is assumed to be electrically conducting, while the other fluid and the channel plates are assumed to be electrically insulating. Separate solutions with appropriate boundary conditions for each fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The partial differential equations governing the flow and heat transfer are transformed to ordinary differential equations and closed-form solutions are obtained in both fluid regions of the channel. The results for various values of the Hartmann number, the angle of magnetic field inclination, the loading parameter and the ratio of the heights of the fluids are presented graphically to show their effect on the flow and heat transfer characteristics.  相似文献   

9.
荣升 《力学学报》1993,25(6):658-664
本文导出了在磁场作用下导电流体热对流流动的方程组及其定解条件,用数值方法模拟了由磁场控制的单晶生长热对流问题,计算结果说明磁场可以有效地抑制流动在壁面处的分离、单胞对流变为多胞对流以及速度和温度的振荡等热不稳定现象,说明了磁场对不稳定热对流有明显的致稳作用。  相似文献   

10.
A general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20×20 grid, and Hartmann numbers Ha={10,30,100}, the accuracy of pressure drop and wall shear stress predictions was {1.1%,1.6%,0.5%}, respectively. Comparable results were obtained also with conducting Hartmann walls. The accuracy of predicted pressure drop and wall shear stress was essentially independent of the resolution of the Hartmann layers. When applied also to the parallel walls, the wall functions reduced the errors by a factor two to three. The wall functions can be implemented in any general flow solver, to allow accurate predictions at reasonable cost even for complex geometries and nonuniform magnetic fields.  相似文献   

11.
This study deals with the electromagnetic damping of free-convective flows in cavities such as those used in the crystal growth horizontal Bridgman configuration. The cavities are filled with a dilute electrically conducting alloy and are subjected to a horizontal temperature gradient. The flow is steady and laminar under an external, vertical, transversal and uniform magnetic field. Several cross sections of the cavities were investigated and can either be centro-symmetric or not. The governing equations for such problems are two coupled partial differential equations, for the velocity and the induced magnetic fields, coupled with a third integral equation for mass conservation. A finite element method has been developed, and the numerical results for the variation of the velocity and the induced magnetic field in terms of the Hartmann number show a considerable decrease in convection intensity as the Hartmann number increases. Results also reveal the presence of the well-known Hartmann and parallel layers. For non-centro-symmetric sections, results show the way the flow reorganises into two cells as the Hartmann number increases.  相似文献   

12.
A novel approach of combined mathematical and computational models has been developed to investigate the oscillatory two-layered flow of blood through arterial stenosis in the presence of a transverse uniform magnetic field applied. Blood in the core region and plasma fluid in the peripheral layer region are assumed to obey the law of Newtonian fluid. An analytical solution is obtained for velocity profile and volumetric flow rate in the peripheral plasma region and also wall shear stress. Finite difference method is employed to solve the momentum equation for the core region. The numerical solutions for velocity, flow rate and flow resistance are computed. The effects of various parameters associated with the present flow problem such as radially variable viscosity, hematocrit, plasma layer thickness, magnetic field and pulsatile Reynolds number on the physiologically important flow characteristics namely velocity distribution, flow rate, wall shear stress and resistance to flow have been investigated. It is observed that the velocity increases with the increase of plasma layer thickness. An increase or a decrease in the velocity and wall shear stress against the increase in the value of magnetic parameter (Hartmann number) and hematocrit is dependent on the value of t. An increase in magnetic field leads to an increase in the flow resistance and it decreases with the increase in the plasma layer thickness and pulsatile Reynolds number. The information concerning the phase lag between the flow characteristics and how it is affected by the hematocrit, plasma layer thickness and Hartmann number has, for the first time, been added to the literature.  相似文献   

13.
In this paper we study a turbulent pipe flow of a weakly electrical conducting fluid subjected to a homogeneous magnetic field which is applied perpendicular to the flow. This configuration forms the basis of a so-called electromagnetic induction flow meter. When the Hartmann number is small so that modification of flow by the Lorenz force can be neglected, the influence of the magnetic field results only in a spatially and temporally varying electric potential. The magnitude of the potential difference across the pipe is then proportional to the flow rate and this constitutes the principle of the flow meter. In this study the flow and electric potential are computed with help of a numerical flow simulation called Large-Eddy Simulation (LES) to which we have added an equation for the electrical potential. The results of the LES have been compared with experiments in which the electric potential is measured as a function of time at several positions on the circumference of the pipe. Both the experimental and numerical results for the mean potential at the pipe wall agree very well with an exact solution that can be obtained in this particular case of a homogeneous magnetic field. Furthermore, it is found that fluctuations in the electric potential due to the turbulence, are small compared to the velocity fluctuations. Based on the results we conclude that electrical-magnetic effects in pipe flow can be accurately computed with LES.  相似文献   

14.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

15.
We consider a plane channel flow of an electrically conducting fluid which is driven by a mean pressure gradient in the presence of an applied magnetic field that is streamwise periodic with zero mean. Magnetic flux expulsion and the associated bifurcation in such a configuration are explored using direct numerical simulations (DNS). The structure of the flow and magnetic fields in the Hartmann regime (where the dominant balance is through Lorentz forces) and the Poiseuille regime (where viscous effects play a significant role) are studied, and detailed comparisons to the existing one-dimensional model of Kamkar and Moffatt (J Fluid Mech 90:107–122, 1982) are drawn to evaluate the validity of the model. Comparisons show good agreement of the model with DNS in the Hartmann regime, but significant differences arising in the Poiseuille regime when nonlinear effects become important. The effects of various parameters like the magnetic Reynolds number, imposed field wavenumber etc. on the bifurcation of the flow are studied. Magnetic field line reconnections occurring during the dynamic runaway reveal a specific two-step pattern that leads to the gradual expulsion of flux in the core region.  相似文献   

16.
The combined effects of electric and magnetic fields on peristaltic flow of Jeffery nanoliquids are analytically investigated. Double-diffusive convection in the asymmetric microchannel is also carried out. The walls of the microchannel are propagating with a finite phase difference in a sinusoidal manner. Rosseland diffusion flux model is employed to examine the thermal radiation effect. The zeta potential on the walls is considered very low to apply Hückel–Debye approximations. The coupled non-linear governing equations are simplified by using dimensional analysis and lubrication theory. The closed form solutions for potential function, nanoparticle fraction field, solute concentration field, temperature field, stream function, and axial velocity are derived under the appropriate boundary conditions. It is noteworthy that the pumping characteristics strongly depend on the magnetic fields, electric fields, electric double layer thickness, Jeffery parameter, thermal radiation and Grashof number. Furthermore, trapping phenomenon is analyzed under the effects of Hartmann number, Jeffrey parameter, Grashof number and Helmholtz–Smoluchowski velocity. The novelty of the present work is the amalgamation of biomimetics (peristaltic propulsion), electro-magneto-hydrodynamics and nanofluid dynamics to produce a smart pump system model for smart drug delivery systems.  相似文献   

17.
郝乐  陈龙  倪明玖 《力学学报》2020,52(6):1645-1654
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.   相似文献   

18.
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.  相似文献   

19.
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier‐Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function‐vorticity‐magnetic induction‐current density formulation of the full MHD equations in 2D. The stream function and magnetic induction equations which are poisson‐type, are solved by using DRBEM with the fundamental solution of Laplace equation. In the DRBEM solution of the time‐dependent vorticity and current density equations all the terms apart from the Laplace term are treated as nonhomogeneities. The time derivatives are approximated by an implicit backward difference whereas the convective terms are approximated by radial basis functions. The applications are given for the MHD flow, in a square cavity and in a backward‐facing step. The numerical results for the square cavity problem in the presence of a magnetic field are visualized for several values of Reynolds, Hartmann and magnetic Reynolds numbers. The effect of each parameter is analyzed with the graphs presented in terms of stream function, vorticity, current density and magnetic induction contours. Then, we provide the solution of the step flow problem in terms of velocity field, vorticity, current density and magnetic field for increasing values of Hartmann number. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper numerically examines the laminar forced convection of a water–Al2O3 nanofluid flowing through a horizontal microchannel. The middle section of the microchannel is heated with a constant and uniform heat flux. The middle section is also influenced by a transverse magnetic field with a uniform strength. The effects of pertinent parameters such as the Reynolds number (0≤Re≤1000), the solid volume fraction (0≤?≤0.04) and the Hartmann number (0≤Ha≤100) on the flow and temperature fields and the heat transfer performance of the microchannel are examined against numerical predictions. The results show that the microchannel performs better heat transfers at higher values of the Reynolds and Hartmann numbers. For all values of the Reynolds and Hartmann numbers considered in this study, the average Nusselt number on the middle section surface of the microchannel increases as the solid volume fraction increases. The rate of this increase is considerably more at higher values of the Reynolds number and at lower values of the Hartmann number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号