首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six derivatives of 4‐amino‐1,5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐3‐one (4‐aminoantipyrine), C11H13N3O, (I), have been synthesized and structurally characterized to investigate the changes in the observed hydrogen‐bonding motifs compared to the original 4‐aminoantipyrine. The derivatives were synthesized from the reactions of 4‐aminoantipyrine with various aldehyde‐, ketone‐ and ester‐containing molecules, producing (Z)‐methyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C16H19N3O3, (II), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]but‐2‐enoate, C17H21N3O3, (III), ethyl 2‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]cyclohex‐1‐enecarboxylate, C20H25N3O3, (IV), (Z)‐ethyl 3‐[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]‐3‐phenylacrylate, C22H23N3O3, (V), 2‐cyano‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C14H14N4O2, (VI), and (E)‐methyl 4‐{[(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)amino]methyl}benzoate, C20H19N3O3, (VII). The asymmetric units of all these compounds have one molecule on a general position. The hydrogen bonding in (I) forms chains of molecules via intermolecular N—H...O hydrogen bonds around a crystallographic sixfold screw axis. In contrast, the formation of enamines for all derived compounds except (VII) favours the formation of a six‐membered intramolecular N—H...O hydrogen‐bonded ring in (II)–(V) and an intermolecular N—H...O hydrogen bond in (VI), whereas there is an intramolecular C—H...O hydrogen bond in the structure of imine (VII). All the reported compounds, except for (II), feature π–π interactions, while C—H...π interactions are observed in (II), C—H...O interactions are observed in (I), (III), (V) and (VI), and a C—O...π interaction is observed in (II).  相似文献   

2.
Condensation of 4‐aminoantipyrine with ethyl acetoacetate, ethyl benzoylacetate, and ethyl cyanoacetate furnished the corresponding ethyl 3‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)aminoacrylate and 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide derivatives. The aminoacrylates derivatives react with acetonitrile and sodium hydride to give 2‐amino‐6‐methyl‐1‐(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)‐4‐pyridone. Reaction of the cyanoacetamide derivative with dimethylformamide‐dimethylacetal (DMF‐DMA) afforded 2‐cyano‐N‐[1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐pyrazol‐4‐yl]‐2‐(N,N‐dimethylamino)methylene acetamide in high yield. Treatment of the latter with 5‐aminopyrazole derivatives afforded the corresponding pyrazolo[2,3‐a]pyrimidines. 2‐cyano‐N‐[(1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3‐oxo‐3H‐pyrazol‐4‐yl)]acetamide also reacts with heterocyclic diazonium salts to give the corresponding pyrazolo[5,1‐c]‐1,2,4‐triazine derivatives. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:508–514, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20046  相似文献   

3.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

4.
A versatile synthetic method has been developed for the formation of variously substituted polycyclic pyrimidoazepine derivatives, formed by nucleophilic substitution reactions on the corresponding chloro‐substituted compounds; the reactions can be promoted either by conventional heating in basic solutions or by microwave heating in solvent‐free systems. Thus, (6RS)‐6,11‐dimethyl‐3,5,6,11‐tetrahydro‐4H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐one, C14H15N3O, (I), was isolated from a solution containing (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine and benzene‐1,2‐diamine; (6RS)‐4‐butoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐8‐ol, C18H23N3O2, (II), was formed by reaction of the corresponding 6‐chloro compound with butanol, and (RS)‐4‐dimethylamino‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐8‐ol, C16H20N4O, (III), was formed by reaction of the chloro analogue with alkaline dimethylformamide. (6RS)‐N‐Benzyl‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N4O, (IV), (6RS)‐N‐benzyl‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indol‐8‐amine, C22H22N4, (V), and (7RS)‐N‐benzyl‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinolin‐9‐amine, C23H24N4, (VI), were all formed by reaction of the corresponding chloro compounds with benzylamine under microwave irradiation. In each of compounds (I)–(IV) and (VI), the azepine ring adopts a conformation close to the boat form, with the C‐methyl group in a quasi‐equatorial site, whereas the corresponding ring in (V) adopts a conformation intermediate between the twist‐boat and twist‐chair forms, with the C‐methyl group in a quasi‐axial site. No two of the structures of (I)–(VI) exhibit the same range of intermolecular hydrogen bonds: different types of sheet are formed in each of (I), (II), (V) and (VI), and different types of chain in each of (III) and (IV).  相似文献   

5.
Cyanoacylation of 2‐amino‐tetrahydrobenzothiophene‐3‐carboxylate ethyl ester with 3‐(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)‐3‐oxopropanenitrile afforded cyanoacetamide 2 . The later was utilized as key intermediate for the synthesis of 3‐substituted 2‐iminocoumarins 3 , 4 , 5 , 6 and acrylamides 7a , b via Knoevenagel condensation with 2‐hydroxy‐1‐naphthaldehyde; 2‐hydroxybenzaldehyde; 1‐nitrosonaphthalen‐2‐ol; 7‐hydroxy‐5‐methoxy‐2‐methyl‐4‐oxo‐4H‐chromene‐6‐carbaldehyde; 4‐dimethylamino‐benzaldehyde; and 4‐piperidin‐1‐yl‐benzaldehyde in EtOH/piperidine. The derivatives 7a , b did not afford the pyrazoles 8a , b upon treating with phenyl hydrazine. Furthermore, coupling of 2 with 4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one and 4,6‐dimethyl‐1H‐pyrrolo[2,3‐b]pyridin‐3‐amine afforded the hydrazone derivatives 9 and 10 , respectively. The later derivative 10 was cyclized in acetic acid to afford the pyridopyrazolotriazine 11 . Finally, 2 was treated with dimethylformamide‐dimethylacetal (DMF‐DMA) to afford the dimethylaminoacrylamide 12 which underwent transamination with 4,6‐dimethyl‐1H‐pyrrolo[2,3‐b]pyridin‐3‐amine to afford the pyrazole 13 . Cyclization of compound 13 in acetic acid or pyridine was unsuccessful. The antitumor and antioxidant activities of the synthesized products were evaluated; several were found to exhibit promising antioxidant activities. J. Heterocyclic Chem., (2011).  相似文献   

6.
A series of N‐substituted 8‐aminoxanthines (=8‐amino‐3,7(or 3,9)‐dihydro‐1H‐purine‐2,6‐diones) 8 – 16 and 34 – 37 were synthesized from the corresponding 8‐nitroxanthines 1 – 7, 30 – 33 , and 8‐(phenylazo)xanthines 17 and 18 by catalytic reduction. Another approach was derived from 6‐amino‐5‐(cyanoamino)uracils (=N‐(6‐amino‐1,2,3,4‐tetrahydro‐2,4‐dioxopyrimidin‐5‐yl)cyanamides) 23, 24 , and 27 by base‐catalyzed cyclization yielding 25 – 28 . All 8‐aminoxanthines 8 – 29 and 34 – 37 were acetylated to the corresponding 8‐(acetylamino)xanthines 40 – 57 , and prolonged heating led to 8‐(diacetylamino)xanthines 58 and 59 . Several 8‐aminoxanthines 8 – 13 were diazotized forming 8‐diazoxanthines 60 – 64 . Coupling reactions of isolated 62 and 64 and intermediary formed 8‐diazoxanthines with 1,3‐dimethylbarbituric acid (=1,3‐dimethylpyrimidine‐2,4,6(1H,3H,5H)‐trione; 66 ) resulted in 5‐[(xanthin‐8‐yl)diazenyl]‐1,3‐dimethylbarbituric acids=3,7(or 3,9)‐dihydro‐8‐[2‐(1,2,3,4‐tetrahydro‐1,3‐dimethyl‐2,4‐dioxopyrimidin‐5‐yl)diazenyl]‐1H‐purine‐2,6‐diones) 67 – 80 . The newly synthesized xanthine derivatives were characterized by the determination of their pKa values, the UV‐ and NMR spectra, as well as elemental analyses.  相似文献   

7.
The chemoselective reactions of 2‐(5‐mercapto‐4‐phenyl‐4H‐[1,2,4]triazol‐3‐ylmethyl)‐6‐p‐tolyl‐4,5‐dihydro‐2H‐pyridazin‐3‐one ( 3 ) with different electrophiles were evaluated. Triazole 3 reacted with alkyl halides in the presence of triethylamine in alcohol to give the corresponding S‐substituted derivatives. On the basis of S‐chemoselective reactions of triazole 3 , a series of amino acid 10a – d and dipeptide derivatives 12a – d were prepared via azide coupling of the corresponding hydrazides 9 and 15 with amino acid ester hydrochlorides, respectively. N‐Substituted triazoles 6a – c or 7a – d attached to pyridazin‐3‐one moiety were successfully formed by the reaction of 3 with activated acrylic acid derivatives or with amines. Antibacterial activities of the synthesized derivatives were investigated through correlation with Escherichia coli FabH inhibitory activities using molecular modeling docking software. The antimicrobial activity of synthesized compounds was evaluated, showing best inhibition zone for N‐substituted carboxylic acid 5a and N‐substituted nitrile 5c parallel to the molecular modeling studies.  相似文献   

8.
This research work describes the synthesis and biological properties of some novel isolated or fused heterocyclic ring systems with pyrazole, for example; enaminones containing pyrazolone ring photochromic functional unit, 4‐[(4‐chlorophenylamino)methylene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one (3) and some analogous derivatives 4, 9, and 10, also as pyrazolo[3,4‐b]pyridine, pyrazolo[3,4‐b]quinoline, pyrazolo[3′,4′:4,5]thieno[2,3‐c]pyrazoline and pyrazolo[3,4‐c]pyrazole were synthesized and characterized. Newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectral data and quantum mechanical calculations. Selected products were tested for their antibacterial and antitumor agents.  相似文献   

9.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
4‐Aminomorpholine, 1‐aminopiperidine, and 1,1‐dimethylhydrazine were carried out in the corresponding methyl dithiocarbamates and those in turn in aminohydrazinethioamides, which under the influence of acid chlorides (benzoyl, 4‐chlorobenzoyl, 4‐fluorobenzoyl, 4‐methoxybenzoyl and 2‐furoyl) gave arylcarbonyl derivatives. Those compounds were cyclized in concentrated H2SO4 to 2‐(N‐cycloalkylamino‐ and N‐dimethylamino)‐amino‐5‐phenyl‐1,3,4‐thiadiazole derivatives and in 10% NaOH aqueous solution to 4‐cycloalkylamino‐ and 4‐dimethylamino‐3‐phenyl‐1,2,4‐triazole‐5(4H)‐thiones.  相似文献   

11.
4‐Amino‐6‐methyl‐3‐(2H)‐thioxo‐5‐(4H)‐oxo‐1,2,4‐triazine ( 1 ) was condensed with 2‐methyl (or phenyl)‐4H‐3,1‐benzoxazin‐4‐one ( 5a,b ) in boiling acetic acid to give compounds 8‐11 . Reacting 1 with chloroacetyl chloride afforded the corresponding chloroacetamido and triazinothiadiazine derivatives 12 and 13 . Condensing 2 with succinic anhydride and/or phthalic anhydride yielded compounds 14 and 15 . Benzoylation of 4‐amino‐6‐methyl‐3‐(2H)‐thioxo‐5‐(4H)‐oxo‐2‐(2,3,4,5‐tetra‐O‐acetyl‐α‐D‐glucopyra‐nosyl)‐1,2,4‐triazine ( 19 ) afforded the corresponding 4‐N,N‐dibenzoyl derivative 20 . Deblocking of the N‐2 glycoside 21 and the S‐glycoside 22 by methanolic ammonia gave compounds 23 and 24 . Acetylation of 4‐amino glycoside 25a afforded the corresponding 4‐mono‐ and 4‐diacetyl derivatives 26 and 27 . Deamination of 25a,b yielded compounds 28a,b . Methylation of compound 28b afforded the corresponding N4‐ and S‐methyl derivatives 29 and 30 .  相似文献   

12.
In DMSO‐solution 2‐amino‐4H‐thiazolo[5,4‐b]indole is converted into a complex mixture of colored products. The three major conversion end‐products, of which two are inhibitors of protein tyrosine phos‐phatases (PTPs), were isolated by chromatographic methods and their structures characterized by spectro‐scopic analysis, including NMR and MS combined with computer assisted structure elucidation, and, finally, confirmed by independent chemical synthesis. Synthesis of 2‐amino‐4H‐thiazolo[5,4‐b]indole as well as its N‐acetyl derivatives prepared from either oxindole or 2‐bromo‐1‐(2‐nitro‐phenyl)ethanone is described.  相似文献   

13.
Spontaneous reactions of an electron‐accepting substituted quinodimethane, 1‐(2,2‐dimethyl‐1,3‐dioxane‐4,6‐dione‐5‐ylidene)‐4‐(dicyanomethylene)‐2,5‐cyclohexadiene, with p‐substituted, α‐substituted, and β‐substituted styrenes were investigated. When p‐substituted styrenes were used as comonomers, no spontaneous reactions took place for styrenes with an electron‐accepting p substituent such as COOMe and CN groups, and both terpolymers and cycloadducts were formed for the other p‐substituted styrenes. When α‐substituted and β‐substituted styrenes were used as comonomers, no reactions occurred for α‐ and β‐substituted styrenes with a bulky phenyl group, and spontaneous reactions took place for those with a smaller methyl group. The reaction products were an alternating copolymer for α‐substituted styrene and both terpolymers and 5‐ethylidene‐2,5‐dimethyl‐1,3‐dioxane‐4,6‐dione for β‐substituted styrenes. The position of the methyl group in the styrenes significantly affected the product formation. This behavior in the spontaneous reactions was discussed on the basis of the ability of formation of the zwitterionic tetramethylene intermediate and its conformation, determined by polar and steric effects of the substituents in the substituted styrenes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5195–5206, 2005  相似文献   

14.
Laquinimod, 5‐chloro‐1,2‐dihydro‐N‐ethyl‐4‐hydroxy‐1‐methyl‐2‐oxo‐N‐ phenyl‐3‐quinoline carboxamide, is an oral drug in clinical trials for the treatment of multiple sclerosis. An efficient synthetic method for laquinimod from 2‐amino‐6‐chlorobenzoic acid via four steps was established. The overall yield of laquinimod is up to 82% as compared with 70% reported in literature. It has also been demonstrated that green reagent dimethyl carbonate is not suitable for the N‐methylation of 5‐chloroisatoic anhydride owing to the ring‐cleavage reaction induced by the generated methanol. The ring‐cleavage by‐products were isolated and characterized by 1H‐NMR and 13C‐NMR. In addition, in the study of laquinimod derivatives, we found that 5‐chloro‐1,2‐dihydro‐N‐ethyl‐4‐hydroxy‐1‐methyl‐2‐oxo‐N‐phenyl‐3‐quinoline carboxamide (laquinimod) was obtained in much higher yield than 7‐chloro‐1,2‐dihydro‐N‐ethyl‐4‐hydroxy‐1‐methyl‐2‐oxo‐N‐phenyl‐3‐quinoline carboxamide under the same reaction conditions, and it is possibly attributed to a neighboring group effect.  相似文献   

15.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde and N‐benzylmethylamine under microwave irradiation gives 5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C19H19N3O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N‐formylated with formic acid or N‐acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E )‐3‐{5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl}‐1‐(4‐bromophenyl)prop‐2‐en‐1‐one, C27H24BrN3O, (II), the N‐formyl derivative (3RS )‐5′‐[benzyl(methyl)amino]‐3′‐methyl‐1′,5‐diphenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole]‐2‐carbaldehyde, C28H27N5O, (III), and the N‐acetyl derivative (3RS )‐2‐acetyl‐5′‐[benzyl(methyl)amino]‐5‐(4‐methoxyphenyl)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole], which crystallizes as the ethanol 0.945‐solvate, C30H31N5O2·0.945C2H6O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C—H…N and C—H…π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C—H…O and C—H…N hydrogen bonds to form sheets of R 22(8) and R 66(42) rings, and those of (IV) are linked by a combination of O—H…N and C—H…O hydrogen bonds to form a ribbon of edge‐fused R 24(16) and R 44(24) rings.  相似文献   

16.
Jing Sun  Hui Gong  Chaoguo Yan 《中国化学》2015,33(9):1049-1056
The novel spirooxindoline fused [1,3]oxazines were efficiently synthesized from Diels‐Alder reaction of N‐arylmaleimides with 1,2‐dihydro‐2‐oxospiro[3H‐indole‐3,2′‐[2H,9aH‐pyrido[2,1‐b][1,3]oxazines], which were generated in situ from three‐component reactions of substituted pyridines and isatins with methyl propiolate, or dimethyl acetylenedicarboxylate. The stereochemistry of the products was clearly clarified by the analysis of 1H NMR data and single crystal structures of the obtained polycyclic compounds.  相似文献   

17.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

18.
Title salts 3 were easily obtained by treatment of formimidoyl isothiocyanates 1 with a twofold excess of methanesulfenyl chloride. They showed interesting chemical behavior toward several nitrogen and carbon nucleophiles. Substitution reactions with isothioureas and acetamide in the presence of triethylamine gave the 1H, 6H‐6aλ4‐thia‐1,3,4,6‐tetraazapentalenes 7 and 6H‐6aλ4‐thia‐1‐oxa‐3,4,6‐triazapentalene 9 , respectively. Addition of p‐toluidine furnished the 5‐imino‐thiadiazole derivatives 10 , which reacted further with diverse heterocumulenes to yield the corresponding thiatriaza‐ and tetraazapentalene species 11 . The N,N′‐bis(1,2,4‐thiadiazol‐5‐ylidene)diaminobenzenes 13 were also prepared and reacted with phenyl isothiocyanate. Two stable rotational isomers were separated for the 1,2‐phenylene product 14b . Other π‐hypervalent sulfur compounds 16 were synthesized under similar conditions from salts 3 and methyl cyanoacetate or dimethyl malonate. The structural assignments were discussed on the basis of IR and NMR spectroscopic data and received additional support from X‐ray analysis of substrate 16a . © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:95–105, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10106  相似文献   

19.
Diazotization of 3‐methyl‐4‐phenyl‐1H‐pyrazol‐5‐amine 1 in hydrochloric acid has been reported to afford the corresponding diazonium salt 2 . The latter underwent azocoupling with a variety of active methylene compounds (barbituric 3a and thiobarbituric 3b acid, 2‐hetarylpyrimidine‐4,6‐dione 6a , 6b , 4‐hydroxy‐6‐methylpyridin‐2(1H)‐one 10a , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one 10b , 4‐hydroxy‐1‐p‐tolyl‐1H‐pyrazole‐3‐carboxylic acid ethyl ester 14 , 1,3‐thiazolidine‐2,4‐dione 16a , 2‐thioxo‐1,3‐thiazolidin‐4‐one 16b ) to yield new pyrazolylazo derivatives. Fused pyrazolo[5,1‐c][1,2,4]triazines 5 , 9a , 9b , 12 , 13 were obtained by heterocyclization reactions. Copyright © 2013 HeteroCorporation  相似文献   

20.
The synthesis of a series of N‐glycosyl caboranylquinazolines is described. The condensation reaction of nitro‐acetylanthranilic acid with aminophenylcarborane gave 3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methyl‐6‐nitroquinazolin‐4(3H)‐one 1 followed by reduction with Na2S to the corresponding 6‐amino‐3‐[(o‐carboran‐1‐yl)phenyl]‐2‐methylquinazolin‐4(3H)‐one 2 . Reaction of compound 2 with D‐glucose or D‐ribose in methanol in the presence of a catalytic amount of acetic acid affords boronated N‐glycosylaminoquinazolines namely: 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl)]aminoquinazolin‐4(3H)‐one 3 or 2‐methyl‐3‐[4‐(o‐carboran‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 4 , respectively. Degradation of the o‐caborane cage of compounds 3 and 4 yielded highly water‐soluble compounds of sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐glucopyranosyl]aminoquinazolin‐4(3H)‐one 5 and sodium 2‐methyl‐3‐[4‐( nido ‐undecarborate‐1‐yl)phenyl]‐6‐[N‐β‐D‐ribofuranosyl)]aminoquinazolin‐4(3H)‐one 6 , respectively. The structures were established on the basis of elemental analysis, NMR, IR and mass spectrometry. The in vitro toxicity test using B16 melanoma cells showed that N‐glycosyl of nido ‐undecaboranylquinazolines ( 5 and 6 ), with higher water solubility, is not toxic at boron concentration of 3000 µg boron ml−1, whereas, N‐glycosyl of closo ‐carboranylquinazolines ( 3 and 4 ) has LD50 > 200 µg boron ml−1. The compounds described here may be considered as potential agents for BNCT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号