首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macrocyclic alkadiynes, 1,7-cyclododecadiyne, 1,7-cyclotridecadiyne, 1,7- and 1,8-cyclotetradecadiyne, and 1,8-cyclopentadecadiyne react with C5H5Rh(CO)2 in boiling cyclooctane to give pale yellow to white volatile compounds of the compositon C5H5Rh(alkadiyne) in which the macrocyclic alkadiyne has undergone an intramolecular transannular cyclization to form a tricyclic cyclobutadiene derivative. The reaction of 1,7-cyclododecadiyne with C5H5Rh(CO)2 also gives a dimer of 1,7-cyclododecadiyne containing a benzene ring. Corresponding reactions of the simple alkynes RCCR (R = C2H5 and C6H5) with C5H5Rh(CO)2 in boiling cyclooctane failed to give any rhodium—cyclobutadiene derivatives. Instead the reaction of 3-hexyne with C5H5Rh(CO)2 under these conditions gave orange-red (C5H5)2Rh2(CO)C4(C2H5)4 and purple-black (C5H5)3Rh3(CO)(C2H5CCC2H5) and the reaction of diphenylacetylene with C5H5Rh(CO)2 gave a low yield of the orange complex (C5H5)3Rh3(C6H5CCC6H5). The infrared, 1H NMR, and mass spectra of these new cyclopentadienylrhodium complexes are described.  相似文献   

2.
The reactions of [Fe2(η-C5H5)2(CO)2(L)(CNMe)] (L  CO or CNME) with HgX2 (X  Cl, Br or I) give [Fe(η-C5H5)(CO)2HgX] and [Fe(η-C5H5)(L)-(CNMe)X] as the sole products in ca. quantitative yields; this is consistent with the previously proposed mechanism for the reactions of electrophiles with polynuclear metal carbonyl derivatives.  相似文献   

3.
Reaction of [(η-C5H5)NiCo3(CO)9] (5) with 1,3,5,7-cyclooctatetraene or 1,4-(SiMe3)2C8H6, respectively, yields the complexes [Co2Ni(CO)638-C8H6R2)] (R=H, SiMe3) (7a, b). Dramatic modifications of the tetrametallic cluster core and the ligand sphere of 5 to give the trinuclear complex 7 are driven by the preference of the cyclopolyenes for facial (μ38) coordination. The title complexes are the first examples of facial cyclooctatetraene coordination to a heterometallic (Co2Ni) triangle.  相似文献   

4.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

5.
Photolysis of (C5H5)Co(CO)2 (I) in toluene or petroleum ether solution at ?78°C generates the unsaturated monocarbonyl species (C5H5)Co(CO), which was identified in solution by its IR spectrum. At room temperature, this monocarbonyl can associate with excess I to give (C5H5)2Co2(CO)3, or dimerize to (C5H5)2Co2(CO)2. The latter is stable as a solid, but in solution it is slowly converted to the insoluble trimer (C5H5)3Co3(CO)3. (C5H5)2Co2(CO)2 is symmetrically cleaved by phosphines to (C5H5)Co(CO)(PR3), while diolefins bring about unsymmetrical cleavage to give (C5H5)Co(diolefin) and (C5H5)Co(CO)2.  相似文献   

6.
The acid-mediated reaction of [{Co2(CO)6(μ-η2-HOCH2CC-)}2] (1) with the meta- and para-substituted aminothiophenols, 3-NH2-C6H4SH and 4-NH2-C6H4SH, affords the straight chain species, [{Co2(CO)6(μ-η2-(3-NH2-C6H4S)CH2CC-)}2] (2) and [{Co2(CO)6(μ-η2-(4-NH2-C6H4S)CH2CC-)}2] (3), respectively. The molecular structure of 3 reveals the presence of two isomeric forms differing in the relative disposition of the S-aryl groups. Conversely, reaction of 1 with the ortho-substituted aminothiophenol, 2-NH2-C6H4SH, furnishes the 10-membered macrocyclic species [{Co2(CO)6}2{cyclo-μ-η2:μ-η2-CH2C2C2CH2SC6H3-NH-2}] (4) along with the linear chain complex [{Co2(CO)6(μ-η2-(2-NH2-C6H4S)CH2CC-)}2] (5). On the other hand, treatment of 1 with the ortho-substituted mercaptopyridine, 2-SH-C5H4N, in the presence of HBF4 gives the salt [{Co2(CO)6(μ-η2-(2-S-C5H4NH)CH2CC-)}2](BF4)2 (6a) in good yield; work-up in the presence of base affords the neutral complex [{Co2(CO)6(μ-η2-(2-S-C5H4N)CH2CC-)}2] (6b). Single crystal X-ray diffraction studies have been reported on 3-5 and 6a.  相似文献   

7.
Irradiation at λ = 507 and 391 nm of [Mo25-C5H5)2(CO)6] in a degassed tetrahydrofuran (THF) or THF-MeOH solution containing nitrite gives [Mo(η5-C5H5)2NO] and several oxo complexes including [{Mo(η5-C5H5)(O)2}2O] in good yields. The quantum yields for the disappearance of [Mo25-C5H5)2(CO)6] in the reaction with NO2 depend on the nitrite concentration, thus suggesting participation of the metal-radical intermediate in the reduction of nitrite. Reactions of [Mo25-C5H5)2(CO)4] with nitrite or nitrate in the dark give the same nitrosyl and oxo complexes as above. An oxygen atom in nitrite or nitrate is mainly transferred onto the molybdenum atom both in the photochemical and the dark reactions.  相似文献   

8.
The salts [Fe2η55-C5H4CH{NMe3)CH(NMe2)C5H4}(CO)2(μ-CO)2][X] (X = I or SO3CF3) are the synthetic precursors to a wide range of [Fe2(η-C5H5)2(CO)2(μ-CO)2] derivatives in which the two cyclopentadienyl ligands are joined by a two-carbon bridge.  相似文献   

9.
Two novel bimetallic complexes, [Cr(CO)3(η 6-C6H5)–C≡C–C6H4–Fc] (Fc = C5H5FeC5H4] (1) and [Cr(CO)3(η 6-C6H5)–C ≡ C–Fc–C(CH3)2–Fc] (3), were synthesized by the Sonogashira coupling reaction. By using of (1) and (3) as ligands to react with Co2(CO)8, two others novel polymetallic complexes, [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}–C6H4–Fc] (2) and [Cr(CO)3(η 6-C6H5){Co2(CO)6-η 2-μ 2-C≡C–}Fc–C(CH3)2–Fc] (4) were obtained. Four carbonyl complexes were characterized by elemental analysis, FT-IR, NMR and MS. The molecular structures of complexes (1), (2) and (4) were determined by single crystal X-ray diffraction. The interactions among the ferrocenyl, Cr(CO)3 and Co2(CO)6-η 2-μ 2-C≡C– units were investigated by cyclic voltammetry.  相似文献   

10.
Treatment of the μ-alkylidyne clusters [Fe2W(μ3-CC6H4Me-4)(μ-CO)- (CO)8(η-C5H5)] and [Co2W(μ3-CMe)(CO)8(η-C5H5)] with PPh2H affords a series of new μ-phosphido-μ-hydrido alkylidyne complexes which undergo protonation with HBF4·Et2O to give cationic derivatives. The X-ray structure of [Co2W(μ-H)(μ3-CMe)(μ-PPh2)(CO)6(η-C5H5)] has been determined.  相似文献   

11.
The mass spectra of the following acetylenic derivatives of Co2(CO)8 are reported: Co2(CO)6C2H2Co2(CO)6C 2,(CH3)2, Co2(CO)6 C2(CH2Cl)2, Co2(CO)6C2 (CF3)2, Co2(CO)2C2(C6H5)2 and Co2(CO)6C2(COOCH3)2. The effect of different C2RR′ on fragmentation modes is investigated. When R and R′ are aromatic groups, the major controlling factor is the stability of charged fragments; in other cases, it seems to be the loss of a stable neutral moiety. Transfer processes of alkoxylic groups are observed in Co2(CO)6C2(COOCH3)2, as well as in Co3(CO),9CCOOCH3, and Co3(CO)9CCOOC2H5. It is suggested that both cobalt and carbon atoms may be the migration sites.  相似文献   

12.
The tertiary phosphines P(C6H5)2R [RM π-C5H5)(CO)2 M(π-C5H5(CO)2 (M = Fe or Ru)] readily effect the displacement of the chloro group in [M′(φ-C5H5)(CO)2Cl] (M′ = Fe or Ru) to give bridged cationic species of the type [MM′(φ-C5H5)2(CO)4P(C6H5)]+. Treatment of [Fe2(CO)9] with P(C6H5)2R [RRu(φ-C5H5)(CO)2] leads to the formation of the neutral mixed-metal derivatives [FeRu(φ-C5H5)(CO)6P(C6H5)2] and [FeRu(φ-C5H5)(CO)5P(C6H5)2].  相似文献   

13.
The tertiary phosphine π-C5H5Fe(CO)2P(C6H5)2 reacts with a suspension of Fe2(CO)9 in benzene to give the dinuclear complex π-C5H5Fe2P(C6H5)2(CO)6. This compound is also obtained by nucleophilic attack of [π-C5H5Fe(CO)2] on Fe(CO)4-[P(C6H5)2Cl] in tetrahydrofuran. Irradiation of a benzene solution of π-C5H5Fe2-P(C6H5)2(CO)6 with ultraviolet light affords π-C5H5Fe2P(C6H5)2(CO)5 which contains both a bridging carbonyl and a bridging phosphido group. The unstable bridged sulphido derivatives π-C5H5Fe2SR(CO)6 (R = CH3 and C6H5) and π-C5H5Fe2(t-C4H9S)(CO)5 are similarly obtained employing π-C5H5Fe(CO)2SR as ligand. The reactions of π-C5H5Fe2P(C6H5)2(CO)5 with tertiary phosphines and phosphites yield three types of products depending on the reaction conditions and the ligand involved. Examples include π-C5H5Fe2P(C6H5)2(CO)4P(C6H5)3, a mono-substituted derivative of π-C5H5Fe2P(C6H5)2(CO)5, and π-C5H5Fe2P(C6H5)2(CO)5P(C2H5)3 and π-C5H5Fe2P(C6H5)2(CO)4[P(OCH)3)3]2, mono- and bis-substituted derivatives of π-C5H5Fe2P(C6H5)2(CO)6, respectively. The reaction of π-C5H5Fe2P(C6H52(CO)5 with (C6H5)2PCH2P(C6H5)2 in benzene under reflux affords [π-C5H5Fe2P(C6H5)2(CO)4](C6H5)2PCH2P(C6H5)2 in which the ditertiary phosphine bridges two iron atoms.  相似文献   

14.
The reactions of [Co(η-C5H5)(CO)(PR3)] or [Co(η-C5GH5)(CO)2]/R3P mixtures (R = alkyl or aryl) with CS2 in refluxing CS2 or CS2/toluene gives rise to [Co(η-C5H5)(PR3)(CS)], [Co(η-C5H5)(PR3)(CS2)], [Co(η-C5H5)(PR3)(CS3)], and [Co3(η-C5H5)3 (CS)(S)] in reasonable yields. The corresponding reactions using PhNCS give [Co(η-C5H5)(PPh3)(PhNCS)] and a polymeric species which appears to be [Co4(η-C5H5)4 (PhNCS)]. Similar products are obtained with [Co(η-C5H5)(CO)(CNR)] or [Co(η0C5H5)(CO)2]/RNC mixtures.  相似文献   

15.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   

16.
The isocyanide complexes [Fe(η-C5H5)(CO)2CNR][PF6] and Cr(CO)5CNR (R = CH3, C6H11, C6H5) are conveniently prepared at ?50°C from carbonyl metallates, isothiocyanates, and phosgene. At room temperature Na[Fe(η-C5H5)(CO)2] reacts with isothiocyanates (11) to give the isocyanide bridged complexes [Fe2(η-C5H5)2(μ-CO)(μ-CNR)(CO)2].  相似文献   

17.
The modeling of the molecular and electronic structures of the following mono- and biosmium complexes of fullerene C60 was performed by quantum chemical methods (MNDO/PM3 and DFT/PBE): (??2-C60)[Os(PPh3)2(CO)CNMe], (??2,??2-C60)[Os(PPh3)2(CO)(CNMe)]2, (??2-C60)[Os(PH3)2(CO)H], (??2,??2-C60)[Os(PH3)2(CO)H]2, (??2-C60)[Os(PH3)2(CO)CNMe], (??2,??2-C60)[Os(PH3)2(CO)CNMe]2, and (5-C60H5)[Os(C5H5)], (5, 5-C60H10)[Os(C5H5)]2.The osmium atoms in the first six complexes are ??2-coordinated by fullerene C60. In the last two complexes, the ??5-coordination mode is observed. The structures of the radical anions of these complexes were calculated. The energies of the frontier orbitals were evaluated. The acceptor properties of the complexes are discussed. The electron affinities were estimated in two ways: from the energy of the lowest unoccupied molecular orbital (LUMO) and as the energy difference between the neutral molecule and its radical anion.  相似文献   

18.
Abstract

p-[(CO)9Co3C]2C6H4 (1) has been synthesized by reacting Co2(CO)8 with p-(Cl3C)2C6H4. 4,4′-[(OC)9Co3CC(O)]C6H4-C6H4[C(O)CCo3(CO)9] (2) has been synthesized from p-LiC6H4-C6H4Li and BrCCo3(CO)9. Similarly m-[(OC)9Co3CC(O)CH2]2C6H4 (3) has been synthesized from m-(LiCH2)2C6H4 and BrCCo3(CO)9. X-ray analysis was done for 1 and 2; both compounds exhibit a stacked structure. Cyclic voltammetry and UV spectra revealed usual behavior for 1, that is, two cluster units interact strongly through the benzene spacer, which is not the case for clusters 2 and 3.  相似文献   

19.
The mass spectra of the following acetylenic derivatives of iron, ruthenium and osmium carbonyls are reported: the iron compounds Fe2(CO)6[C2(C6H5)s2]2, Fe2(CO)6[C2(CH3)2]2 and Fe2(CO)6[C2(C2H5)2]2, the ruthenium compounds Ru2(CO)6[C2(C6H5)2]2, and Ru2(CO)6[C2(CH3)2]2 and the osmium compounds Os2(CO)6[C2(C6H5)2]2, Os2(CO)6[C2HC6H5]2 and Os2(CO)6[C2(CH3)2]2. Iron compounds exhibit breakdown schemes where binuclear, mononuclear and hydrocarbon ions are present. On the other hand, ruthenium and osmium compounds fragment in a similar way and give rise to singly and doubly charged binuclear ions. Phenylic derivatives of ruthenium and osmium also give weak triply charged ions. The results are discussed in terms of relative strengths of the metal-metal and metal-carbon bonds.  相似文献   

20.
η5-C5H5(CO)2FeNa reacts with the benzimide chlorides C6H5(Cl)CNR (R  CH(CH3)2, C6H5) in boiling THF to give the η1-iminoacyl complexes η5-C5H5 (CO)2Fe[η1-C(C6H5)NR]. Alternatively, the new Fe complexes [η5-C5H5(CO)FeC(C6H5)N(CH3)C(C6H5)NCH3PF6 (IV) and [η5-C5H5(CO)2FeC(C6H5)N(CH3)C(C6H5)NCH3]PF6 (V) are formed under the same conditions, if R  CH3. Hudrolysis of the CN single bond of the ligand in V, not stabilized by a chelate effects as in IV, results in the formation of [η5-C5H5(CO)2FeC(C6H5)NHCH3]PF6 (VII). Reaction of η5-C5H5(CO)2 with N-benyzylbenzimido chloride yields η5-C5H5(CO)2FeCH2C6H5 as the only isolated product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号