首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One novel, highly oxygenated nortriterpenoid, schintrilactone C ( 1 ), and four known compounds, 2 – 5 , were isolated from the rattan of Schisandra sphenanthera. Their structures were determined by analysis of 1D‐ and 2D‐NMR spectroscopic data. Schintrilactone C is the third example of wuweiziartane‐type nortriterpenoids, bearing a modified five‐membered D ring, a δ‐lactone E ring, and a spirocyclic moiety in the side chain at C(13).  相似文献   

2.
Three new C19‐diterpenoid alkaloids, named aconitramines A ( 1 ), B ( 2 ), and C ( 3 ), were isolated from Aconitum transsectum. By UV, IR, 1D‐ and 2D‐NMR, and MS analyses, their structures were elucidated as 18‐methoxyvilmoraconitine, 18‐demethoxydolichotine A, and 18‐demethoxydolichotine B. Compound 1 is the second known C19‐diterpenoid alkaloid with a three‐membered ring formed by C(8), C(9), and C(10).  相似文献   

3.
The conformations of (Z)‐ and (E)‐5‐oxo‐B‐nor‐5,10‐secocholest‐1(10)‐en‐3β‐yl acetates ( 2 and 3 , resp.) were examined by a combination of X‐ray crystallographic analysis and NMR spectroscopy, with emphasis on the geometry of the cyclononenone moiety. The 1H‐ and 13C‐NMR spectra showed that the unsaturated nine‐membered ring of (E)‐isomer 3 in C6D6 and (D6)acetone solution exists in a sole conformation of type B 1 , which is similar to its solid‐state conformation. The (Z)‐isomer 2 in C6D6, CDCl3, and (D6)acetone solution, however, exists in two conformational forms of different families, with different orientation of the carbonyl group, the predominant form (85%) corresponding to the conformation of type A 1 and the minor (15%) to the conformation A 2 present also in the crystalline state. In this solid‐state conformations of the nine‐membered ring of both compounds, the 19‐Me and 5‐oxo groups are ‘β’‐oriented. The NMR analysis suggests that the nine‐membered ring of 4 has a conformation of type C 1 in CDCl3 solution.  相似文献   

4.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

5.
The three organic two‐photon‐absorbing cycloalkanone chromophores 2,4‐bis[4‐(diethylamino)benzylidene]cyclobutanone, C26H32N2O ( I ), 2,5‐bis[4‐(diethylamino)benzylidene]cyclopentanone, C27H34N2O ( II ), and 2,6‐bis[4‐(diethylamino)benzylidene]cyclohexanone, C28H36N2O ( III ), were obtained by a reaction between 4‐(diethylamino)benzaldehyde and the corresponding cycloalkanone and were characterized by single‐crystal X‐ray diffraction studies, as well as density functional theory (DFT) quantum‐chemical calculations. Molecules of this series have three main fragments, i.e. central acceptor (A) and two terminal donors (D1 and D2) and represent examples of the D1–π–A–π–D2 molecular design. All three compounds crystallize with two crystallographically independent molecules in the asymmetric unit ( A and B ) and are distinguished by the conformations of both the molecular Et2N—C6H4—C=C—C(=O)—C=C—C6H4—NEt2 backbone (arcuate or linear) and the terminal diethylamino substituents (syn‐ or antiperiplanar to the plane of the molecule). The central four‐ and five‐membered rings in I and II are almost planar, and the six‐membered ring in III adopts a sofa conformation. In the crystals of I – III , the two independent molecules A and B form hydrogen‐bonded [ A … B ] dimers via intermolecular C—H…O hydrogen bonds. Furthermore, the [ A … B ] dimers in I are bound by intermolecular C—H…O hydrogen bonds into two‐tier puckered layers, whereas in the crystals of II and III , the [ A … B ] dimers are stacked along the c and a axes, respectively. Taking into account the decreasing steric strain upon expanding the central ring, compound I might be more efficient as a two‐photon absorption chromophore than compounds II and III , which corresponds to the results of spectroscopic studies.  相似文献   

6.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

7.
The title compound 4 , i.e. 9‐chloro‐4,5‐dihydro‐2‐ethyl‐1‐(2,4,6‐trichlorophenyl)‐1H‐1,2,4‐triazolo[3,2‐d]‐[1,5]benzoxazepinium hexachloroantimonate, is a novel 6‐7‐5 tricyclic heterocycle. C18H14Cl4N3O·SbCJ6, M = 764.61, P21/c(#14), a = 13.457(4), b = 11.583(2), c = 18.992(3) Å α = 90, β = 110.11(1)°, Z = 4, V = 2780(1) Å3, Dc = 1.827 g/cc, μ (MoKα) = 19.69 cm?1, F(000) = 1488.00, T = 293 K, Rint = 0.055 for 3094 independent reflections with I>3.00σ(I). The five‐membered heterocyclic ring is nearly planar, with the trichlorophenyl ring at N(2) almost perpendicular to it. However, the seven‐membered ring is not planar, but adopts a twist‐boat conformation.  相似文献   

8.
A 15‐step total synthesis of (?)‐lundurine A ( 1 ) from easily accessible (S)‐pyrrolidinone 18 is reported. A Simmons‐Smith reaction allows the efficient, simultaneous assembly of the cyclopropyl C ring, the six‐membered D ring, the seven‐membered E ring, and the quaternary carbon stereocenters at C2 and C7. The absolute configuration of natural (?)‐lundurine A was deduced to be 2R,7R,20R based on the stepwise construction of the stereocenters during the total synthesis.  相似文献   

9.
Two new limonoids, kihadanin C ( 1 ) and 23‐methoxydasylactone A ( 2 ), together with seven related known ones, 3 – 9 , were isolated from the root bark of the plant Dictamnus dasycarpus. The structures of the new compounds were elucidated on the basis of extensive analyses of their spectroscopic data (1D‐ and 2D‐NMR, MS) and by comparison of their NMR data with those reported in the literature. To the best of our knowledge, 1 presents the first example of A,Dseco limonoid with an unusual 3,4‐dihydroxy‐2,5‐dimethoxytetrahydrofuran moiety as ring E. In the bioassay in vitro, 7 showed moderate antibacterial activity against Staphylococcus aureus, while 8 and 9 displayed neuroprotective activities against H2O2‐induced injury in SH‐SY5Y cells.  相似文献   

10.
The title chiral compound, 3‐amino­carbonyl‐1,2,2‐tri­methyl­cyclo­pentane‐1‐carboxylic acid, C10H17NO3, was prepared from (1R,3S)‐camphoric acid. The five‐membered ring adopts a conformation which is intermediate between a twist and an envelope. Elongations of the C—C bonds and contractions of the C—C—C bond angles are observed within the five‐membered ring. A 1H NMR spectrum was recorded to assist in distinguishing the amide group from the carboxyl group.  相似文献   

11.
1‐Azido‐ and 1‐[trimethylsilyl(trimethylsilyloxy)]boracycloalkanes, (‐Y‐BX‐) [X = N3 ( 2 ), N(OSiMe3)SiMe3 ( 3 ), Y = alkanediyl], were synthesized from the corresponding chloroboranes [X = Cl ( 1 )]. The following alkanediyl ring fragments were considered: Y = ‐CH2‐CHMe‐CH2‐CH2‐ ( a ), 1, 5‐cyclooctanediyl ( b ), ‐(CH2)6‐ ( c ), ‐(CH2)7‐ ( d ), ‐CMe2‐(CH2)6‐ ( e ), ‐C(‐CMe2‐CH2‐)‐(CH2)6‐ ( f ). The thermal elimination of N2 (from 2 ) or (SiMe3)2O (from 3 ) is accompanied by the migration of one of the two alkanediyl ends from boron to nitrogen under ring expansion to give the cyclic iminoboranes 4 . Formed in solution, the iminoboranes react immediately with undecomposed starting material 2 or 3 under formation of the products 5 or 6 by azidoboration or aminoboration, respectively, of the BN multiple bond. The temperature for the decomposition of 2 depends on the ring size: the five‐membered ring compound 2a and the bicyclic six‐membered ring compound 2b decompose beneath 0 °C, the seven‐ and eight‐membered ring compounds 2c and 2d in boiling hexane and toluene, respectively, whereas the eight‐membered ring compounds 2e and 2f are decomposed in solution above 100 °C so slowly that only unidentified polymers are found. The boranes 3a and 3b , stable at room temperature, afford a temperature of 80 °C for decomposition in solution. The azidoboranes 2c ‐ f can be transported into the gas‐phase without decomposition and can be thermolyzed there at 270‐285 °C. The cyclic iminoboranes 4c ‐ e , formed in the hot tube, were condensed at ‐196 °C, but thereafter not characterized, because they either cyclotrimerized ( 4c , d ) or cyclodimerized ( 4e , e′ ; two isomers depending on which end of the 1, 1‐dimethylheptamethylene unit migrates) beneath ‐60 °C under formation of the corresponding borazines 10c , d or of the diazadiboretidine isomer mixture 9e , e′ , respectively; the spirocyclic borane 2f gives a mixture of unidentified products on gas‐phase thermolysis. The iminoboranes 4e , e′ can be trapped by ethyloboration with BEt3 giving the products 8e , e′ . The acyclic azidoborane R(Me)BN3 ( 2g ; R = 1‐methylcycloheptyl), formed after the ring‐contracting rearrangement of a boracyclooctane derivative, gives the isolated and characterized mixture of the acyclic iminoboranes MeB≡NR ( 4g ) and RB≡NMe ( 4g′ ) upon gas‐phase thermolysis; the stabilization of 4g , g′ gives the Dewar borazines 11g and 11g′ .  相似文献   

12.
The seven‐membered beryllium‐containing heterocycle beryllepin, C6H6Be, has been examined computationally at the B3LYP/6‐311++G** density functional level of theory. Beryllepin is best described as a planar singlet heterocyclic conjugated triene with marginal aromatic character containing a C–Be–C moiety forced to be nonlinear (∠C‐Be‐C = 146.25°) by the cyclic constraints of the seven‐membered ring. The molecule can be considered to be derived from a benzene‐like system in which a neutral beryllium atom has been inserted between two adjacent carbon atoms. The 11 other possible “beryllium‐inserted benzenes,” C6H6Ben, n = 2–6, have also been investigated. Only two of these heterocyclic systems, the eight‐membered 1,4‐diberyllocin and the nine‐membered 1,4,7‐triberyllonin, were found to be stable, singlet‐ground‐state systems, albeit with little aromatic character. Of the remaining nine beryllium‐inserted benzenes, with the exception of the 11‐membered ring containing five beryllium atoms and the 12‐membered ring containing six beryllium atoms, which were calculated to exist as a ground state pentet and septet, respectively, all were calculated to be ground state triplet systems.  相似文献   

13.
In the title compound, C24H36O6, the ester linkage in ring A is equatorial. The six‐membered rings A, B and C have chair conformations. The five‐membered ring D adopts a 13β,14α‐half‐chair conformation and the E ring adopts an envelope conformation. The A/B, B/C and C/D ring junctions are trans, whereas the D/E junction is cis.  相似文献   

14.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

15.
Two new spirostanol saponins, kingianoside I ( 1 ) and kingianoside K ( 2 ), corresponding to (3β,23S,25R)‐23‐hydroxy‐12‐oxospirost‐5‐en‐3‐yl 4‐Oβ‐D ‐glucopyranosyl‐β‐D ‐galactopyranoside ( 1 ) and (3β,25R)‐7‐oxospirost‐5‐en‐3‐yl α‐L ‐arabinofuranosyl‐(1→4)‐[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)]‐β‐D ‐glucopyranoside ( 2 ), along with 13 known compounds, daucosterol, (25R)‐kingianoside G, (25RS)‐kingianoside A, pratioside D1, (25RS)‐pratioside D1, (25S)‐kingianoside C, kingianoside C, ginsenoside Rb1, saponins Tb and Pb, dioscin, gracillin, and saponin Pa, were isolated from the processed rhizomes of Polygonatum kingianum. The structures of the new compounds were elucidated by detailed spectroscopic analyses, including 1D‐ and 2D‐NMR techniques, and chemical methods. Compound 2 contains a novel unusual spirostanol saponin aglycone. Ginsenoside Rb1 and saponin Tb were isolated for the first time from the genus Polygonatum. The 13 known compounds were detected for the first time in the processed Polygonatum kingianum.  相似文献   

16.
In the title compounds, C23H33NO3 and C21H30O3, respectively, the ester linkage in ring A is equatorial. In these steroids, the six‐membered rings A and B have chair conformations, but ring C can be better described as a half‐chair. The five‐membered ring D adopts a 14α‐envelop conformation. The A/B, B/C and C/D ring junctions are trans.  相似文献   

17.
The 1H and 13C NMR spectra of 10‐deoxymethynolide (1), 8.9‐dihydro‐10‐deoxymethynolide (2) and its glycosylated derivatives (3–9) were analyzed using gradient‐selected NMR techniques, including 1D TOCSY, gCOSY, 1D NOESY (DPFGSENOE), NOESY, gHMBC, gHSQC and gHSQC‐TOCSY. The NMR spectral parameters (chemical shifts and coupling constants) of 1–9 were determined by iterative analysis. For the first time, complete and unambiguous assignment of the 1H NMR spectrum of 10‐deoxymethynolide (1) has been achieved in CDCl3, CD3OD and C6D6 solvents. The 1H NMR spectrum of 8,9‐dihydro‐10‐deoxymethynolide (2) was recorded in CDCl3, (CD3)2CO and CD3OD solutions to determine the conformation. NMR‐based conformational analysis of 1 and 2 in conjugation with molecular modeling concluded that the 12‐membered ring of the macrolactones may predominantly exist in a single stable conformation in all solvents examined. In all cases, a change in solvent caused only small changes in chemical shifts and coupling constants, suggesting that all glycosylated methymycin analogs exist with similar conformations of the aglycone ring in solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Talatisamine ( 1 ) is a member of the C19‐diterpenoid alkaloid family, and exhibits K+ channel inhibitory and antiarrhythmic activities. The formidable synthetic challenge that 1 presents is due to its highly oxidized and intricately fused hexacyclic 6/7/5/6/6/5‐membered‐ring structure (ABCDEF‐ring) with 12 contiguous stereocenters. Here we report an efficient synthetic route to 1 by the assembly of two structurally simple fragments, chiral 6/6‐membered AE‐ring 7 and aromatic 6‐membered D‐ring 6 . AE‐ring 7 was constructed from 2‐cyclohexenone ( 8 ) through fusing an N‐ethylpiperidine ring by a double Mannich reaction. After coupling 6 with 7 , an oxidative dearomatization/Diels–Alder reaction sequence generated fused pentacycle 4 b . The newly formed 6/6‐membered ring system was then stereospecifically reorganized into the 7/5‐membered BC‐ring of 3 via a Wagner–Meerwein rearrangement. Finally, Hg(OAc)2 induced an oxidative aza‐Prins cyclization of 2 , thereby forging the remaining 5‐membered F‐ring. The total synthesis of 1 was thus accomplished by optimizing and orchestrating 33 transformations from 8 .  相似文献   

19.
Three new chromenone glucosides acylated with monoterpene acids, eucamaldusides A ( 1 ), B ( 2 ), and C ( 3 ), were isolated from the leaves of Eucalyptus camaldulensis var. obtusa, together with the five known compounds ursolic acid lactone, obtusilin, β‐sitosterol glucoside, 4‐hydroxybenzoic acid, and cypellocarpin C. The structures of the new compounds were established by exhaustive 1D‐ and 2D‐NMR spectroscopic studies. Their configuration was determined by measuring the [α]D of the known methyl esters of the monoterpene acids obtained by methanolysis of 1 – 3 .  相似文献   

20.
Base‐promoted (KOH or MeONa in MeOH, or NaH in THF) cycloisomerisation of partially benzylated, 1‐substituted (R = Ph CC, pyridin‐2‐yl, or Br) ald‐1‐ynitols leads to (Z)‐configured five‐, six‐, and seven‐membered exo‐glycals. The reactivity of the ald‐1‐ynitols depends upon their configuration. The ald‐1‐ynitols were derived from 2,3,5‐tri‐O‐benzyl‐D ‐ribofuranose 1 , and the corresponding, partially O‐benzylated galactose, glucose, and mannose hemiacetals by ethynylation. The hex‐1‐ynitol 2 derived from 1 (61%) was transformed via the 1‐phenylbuta‐1,3‐diyne 3 and the 1‐(pyridin‐2‐yl)acetylene 5 into the five‐membered exo‐glycals 4 and 6 (in 66 and 72% yields, resp., from 2 ). The analoguous ethynylation of 2,3,4,6‐tetra‐O‐benzyl‐D ‐galactose 8 was accompanied by elimination of one benzyloxy (BnO) group to the hept‐3‐en‐1‐ynitol 9 (71%), which was transformed into the non‐5‐ene‐1,3‐diynitol 10 and further into the six‐membered exo‐glycal 11 (50% from 9 ). Addition of Me3SiCCH to the galactose 8 and to the gluco‐ and manno‐analogues 16 and 24 gave epimeric mixtures of the silylated oct‐1‐ynitols (86% of 12L / 12D 45 : 55, 94% of 17L / 17D 7 : 3, and 86% of 25L / 25D 55 : 45), which were separated by flash chromatography, and individually transformed into the corresponding 1‐bromooct‐1‐ynitols. Upon treatment with NaH in THF, only the minor epimers 13L, 18D , and 26D cyclised readily to form the seven‐membered hydroxy exo‐glycals. They were acetylated to the more stable monoacetates 14L, 23D , and 28D (82–89% overall yield). Under the same conditions, the epimers 13D, 18L , and 26L decomposed within 12 h mostly to polar products. The difference of reactivity was rationalised by analysing the consequences of an intramolecular C(3)O H ⋅⋅⋅ OC(7) H‐bond of the intermediate alkoxides on the orientation of O C(7) of 13L, 18D , and 26D and its proximity to the ethynyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号