首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R2C=GeH2和R2Ge=CH2结构与成键特征的理论研究   总被引:2,自引:0,他引:2  
耿志远  贾宝丽  王永成  姚琨  方冉  张兴辉 《化学学报》2006,64(19):1974-1980
用密度泛函理论(DFT), 在B3LYP/6-31+G(d, p)水平上研究了取代基对二取代锗烯R2Ge=CH2和R2C=GeH2 [R=H, OH, NH2, SH, PH2, F, Cl, Br, (NHCH)2, CH3, (CH)2]的影响. 研究发现π供电子取代基在碳上时更能引起分子结构在锗端的锥型化. 碳原子上的π电子给予取代基的给电子效应越强, R2C的单-三态能量差越大, π电子的反极化效应就越强, 使得化合物的结构在锗端发生的弯曲越明显, 从而使得弯曲结构更稳定. 和前人的计算相比, 碳上的给电子取代基对GeH2结构影响大于它对SiH2的影响.  相似文献   

2.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis.  相似文献   

3.
We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic, neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obtain the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO–LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency–space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised π → π* electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV. Doubly ionised PAHs are found to display strong electronic transitions of π → π* character in the near-IR, visible, and near-UV spectral ranges, like their singly charged counterparts. While, as expected, the broad plasmon-like structure with its maximum at about 17–18 eV is relatively insensitive to the charge-state of the molecule, a systematic decrease with increasing positive charge of the absorption cross-section between 6 and 12 eV is observed for each member of the class.  相似文献   

4.
5.
Caged chalcogens : A series of novel, functionalized TnSm cages (T=Ge, Sn; n/m=4:6, 3:4) with terminal COO(H) or COMe groups were synthesized and show further reactivity toward CuI complexes (an example of which is shown here) and to hydrazines. This led to the generation of functionalized Cu/T/S clusters or the formation of Schiff bases at the C?O groups, respectively, with or without further fragmentation of the T/S core.

  相似文献   


6.
Cerium oxide cluster cations (CemOn+, m=2–16; n=2m, 2m±1 and 2m±2) are prepared by laser ablation and reacted with acetylene (C2H2) in a fast‐flow reactor. A time‐of‐flight mass spectrometer is used to detect the cluster distribution before and after the reactions. Reactions of stoichiometric CemO2m+ (m=2–6) with C2H2 produce CemO2m?2+ clusters, which indicates a “double‐oxygen‐atom transfer” reaction CemO2m++C2H2→CemO2m?2++(CHO)2 (ethanedial). A single‐oxygen‐atom transfer reaction channel is also identified as CemO2m++C2H2→CemO2m?1++C2H2O (at least for m=2 and 3). Density functional theory calculations are performed to study reaction mechanisms of Ce2O4++C2H2, and the calculated results confirm that both the single‐ and double‐oxygen‐atom transfer channels are thermodynamically and kinetically favourable.  相似文献   

7.
Herein we report the discovery that two bottleable, neutral, base‐stabilized diborane(5) compounds are able to bind strongly to a number of copper(I) complexes exclusively through their B?B bond. The resulting complexes represent the first known complexes containing unsupported, neutral σB?B diborane ligands. Single‐crystal X‐ray analyses of these complexes show that the X?Cu moiety (X=Cl, OTf, C6F5) lies opposite the bridging hydrogen atom of the diborane and is near perpendicular to the B?B bond, interacting almost equally with both boron atoms and causing a B?B bond elongation. DFT studies show that σ donation from and π backdonation to the pseudo‐π‐like B?B bond account for their formation. Astoundingly, these copper σB?B complexes are inert to ligand exchange with pyridine under either heating or photoirradiation.  相似文献   

8.
Alkyl‐substituted η5‐pentadienyl half‐sandwich complexes of cobalt have been reported to undergo [5+2] cycloaddition reactions with alkynes to provide η23‐cycloheptadienyl complexes under kinetic control. DFT studies have been used to elucidate the mechanism of the cyclization reaction as well as that of the subsequent isomerization to the final η5‐cycloheptadienyl product. The initial cyclization is a stepwise process of olefin decoordination/alkyne capture, C? C bond formation, olefin arm capture, and a second C? C bond formation; the initial decoordination/capture step is rate‐limiting. Once the η23‐cycloheptadienyl complex has been formed, isomerization to η5‐cycloheptadienyl again involves several steps: olefin decoordination, β‐hydride elimination, reinsertion, and olefin coordination; also here the initial decoordination step is rate limiting. Substituents strongly affect the ease of reaction. Pentadienyl substituents in the 1‐ and 5‐positions assist pentadienyl opening and hence accelerate the reaction, while substituents at the 3‐position have a strongly retarding effect on the same step. Substituents at the alkyne (2‐butyne vs. ethyne) result in much faster isomerization due to easier olefin decoordination. Paths involving triplet states do not appear to be competitive.  相似文献   

9.
The structures, stabilities, nature of bonding, and potential energy surfaces of low‐energy isomers of planar CnB5 (n = 1?7) have been systematically explored at the CCSD(T)/6‐311+G(d)//B3LYP/6‐311+G(d) level. Incremental binding energy (IBE) and second order energy difference (Δ2E) analyses demonstrate that CnB5 clusters with even n have relatively higher stability. The nature of bonding in these clusters is discussed based on valence molecular orbital (VMO), and Mayer bond order (MBO). Hückel (4n + 2) rule and nucleus‐independent chemical shift (NICS) values suggest that the ground states of C3B5, C4B5, and C7B5 have π aromaticity. VMO, electron localization function (ELF), adaptive natural density partitioning (AdNDP), and NICS analyses reveal the double aromaticity of C3B5 cation. CB5 and C3B5 are stable both thermodynamically and kinetically based on isomerization analysis. In addition, the simulated IR spectra are expected to be helpful for future experimental studies of these clusters.  相似文献   

10.
Multinuclear solid‐state NMR studies of Cp*2Sc?R (Cp*=pentamethylcyclopentadienyl; R=Me, Ph, Et) and DFT calculations show that the Sc?Et complex contains a β‐CH agostic interaction. The static central transition 45Sc NMR spectra show that the quadrupolar coupling constants (Cq) follow the trend of Ph≈Me>Et, indicating that the Sc?R bond is different in Cp*2Sc?Et compared to the methyl and phenyl complexes. Analysis of the chemical shift tensor (CST) shows that the deshielding experienced by Cβ in Sc?CH2CH3 is related to coupling between the filled σC‐C orbital and the vacant orbital.  相似文献   

11.
A series of η5‐cyclopentadienylruthenium complexes, [(η5‐C5MenH5?n)RuCl(cod)] (cod=1,5‐cyclooctadiene), are evaluated as catalysts for the cycloaddition of 1,6‐diynes with alkynes. As a result, we unexpectedly found that the complex bearing the 1,2,4‐Me3Cp ligand is the most efficient catalyst in terms of turnover number (TON) for the cycloaddition of a bulky diiododiyne with acetylene, recording the highest TON of 970 with a catalyst loading of 0.1 mol %. To obtain insight into this result, we evaluate the electron richness of all complexes by cyclic voltammetric analyses, which indicate that the electron density of the ruthenium center increases with an increase in methyl substitution on the Cp′ ligands. The initial rate (up to 10 % conversion) of the cycloaddition was then measured using 1H NMR spectroscopy. The initial rate is found to decrease as the number of methyl substituents increases. According to these results, we assumed that the optimum catalytic performance exhibited by the 1,2,4‐trimethylcyclopentadienyl complex can be attributed to its robustness under the catalytic cycloaddition conditions. The steric and electronic effects of the Cp′ ligands are also investigated in terms of the regioselectivity of the cycloaddition of an unsymmetrical diyne and in terms of the chemoselectivity in the cycloaddition of a 1,6‐heptadiyne with norbornene.  相似文献   

12.
Proof‐of‐principle is reported for a directed functionalization and derivatization of chalcogenidometallate cages with respect to the formation of hybrid compounds containing (M)/T/E semi‐conductor nodes (M=Cu; T=Ge, Sn; E=S). In their Full Paper on page 6595 ff. , S. Dehnen et al. show how it is possible to generate functionalized ternary CuSnS or CuGeS clusters and to transfer COMe ligands into CR(N–NH2) or CR(N–NHPh) terminal groups by reaction of a series of novel, functionalized thiometallate cages [(RT)nSm] (n/m=4/6, 3/4), the R ligands of which are terminated by COO(H) or COMe.

  相似文献   


13.
Caspases are a family of cysteine proteases, which play a crucial role in apoptosis and inflammation. The reaction mechanisms involving the cysteine proteases model compound HSH with diketone (PhCOCOCH3‐nXn, (X = F, Cl, n = 0, 1, 2) substrate have been studied using B3LYP/6‐311+G* level of density functional theory method. The harmonic vibrational frequencies were calculated at the same level of theory used for the characterization of stationary points and zero‐point vibrational energy corrections. The condensed Fukui functions have been calculated to find the favorable reactive site for the electrophilic (f), nucleophilic (f), and radical (f) attacks in the reactants. The transition states were connected with reactants, intermediate, and products, and the minimum energy paths have been confirmed through intrinsic reaction coordinate calculation. The potential energy barrier between each step of the reactions has been calculated to find the most favorable reaction path. The binding nature of cysteine model compound with diketone substrate has been studied through the interaction energies, bond lengths, electron density, natural bond orbital, and atoms in molecules theory analysis. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

14.
We perform a systematic study on the geometry, stability, nature of bonding, and potential energy surface of low‐lying isomers of planar and cyclic BnN2 (n = 1?6) at the CCSD(T)/6‐311+G(d)//B3LYP/6‐311+G(d) level. BnN2 (n = 2?4) clusters are structurally similar to pure boron clusters. The evolution of the binding energy per atom, incremental binding energy, and second‐order difference of total energy with the size of BnN2 reveals that the lowest energy isomer of B3N2 has high stability. B5N2 and B6N2 possess π‐aromaticity according to Hückel (4n + 2) rule. The aromaticity of some isomers of B4N2 and B6N2 is examined based on their valence molecular orbitals. At the CCSD(T)/6‐311+G(d)//B3LYP/6‐311+G(d) level, several B2N2, B3N2, B4N2, and B5N2 isomers are predicted to be stable both thermodynamically and kinetically, and detectable in future experiments. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Reaction of anhydrous ytterbium trichlorides with 2 equiv.of cyclopentylindenyl lithium in THF solution,followed by removal of the solvent and crystallization of the porduct from diethyl ether,affords a crystal complex of the composition(C5H9C9H6)2Yb(μ-Cl)2Li(Et2O)2.Crystallographic analysis shows that the ytterbium coordinated by two cyclopentylindenly rings and lithium surrounded by two ether molecules are bridged by the two chlorine atoms and Yb,Li and two chlorine atoms form a plane.  相似文献   

16.
Designing superacids: A computational study of protonated boratabenzenes and the gas‐phase acidity of their conjugate acids is presented. Conjugate acids of boratabenzenes substituted with CN or CF3 groups (see figure) are highly acidic species; the protonated hexacyanoboratabenzene and hexakis(trifluoromethyl)boratabenzene have computational gas‐phase acidities of 250.5 and 276.8 kcal mol?1, respectively.

  相似文献   


17.
The structure, bonding, and stability of clusters with the empirical formula CE5? (E=Al–Tl) have been analyzed by means of high‐level computations. The results indicate that, whereas aluminum and gallium clusters have C2v structures with a planar tetracoordinate carbon (ptC), their heavier homologues prefer three‐dimensional C4v forms with a pentacoordinate carbon center over the ptC one. The reason for such a preference is a delicate balance between the interaction energy of the fifth E atom with CE4 and the distortion energy. Moreover, bonding analysis shows that the ptC systems can be better described as CE4?, with 17‐valence electrons interacting with E. The ptC core in these systems exhibits double aromatic (both σ and π) behavior, but the σ contribution is dominating.  相似文献   

18.
19.
20.
[Cp°MoCl4] (Cp° = C5EtMe4) reacts with primary phosphines PH2R to give the paramagnetic phosphine complexes [Cp°MoCl4(PH2R)] [Cp° = C5EtMe4, R = But ( 1 ), 1‐Ad (1‐Ad = 1‐adamantyl; 2 ), Cy ( 3 ), Ph ( 4 ), Mes (Mes = 2, 4, 6‐Me3C6H2; 5 ), Tipp (Tipp = 2, 4, 6‐Pri3C6H2; 6 )]. 1 — 6 were characterized spectroscopically (IR, MS), and X‐ray crystal structures were determined for 1 — 4 and 6 . EPR investigations in liquid and frozen solution confirmed the presence of MoV species, and the data were used to analyze the spin‐density distribution in the first coordination sphere. Complexes 3 and 4 react with two equivalents of NEt3 with formation of [Cp°MoCl23‐P4Cy4H)] ( 7 ) and [Cp°2Mo2(μ‐Cl)2(μ‐P4Ph4)] ( 8 ), respectively, in low yield. Complexes 7 and 8 were characterized by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号