首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple method is proposed for treating curved or irregular boundaries in Cartesian grid shallow flow models. It directly evaluates fictional values in ‘ghost’ cells adjacent to boundary cells and requires no interpolation or generation of cut cells. The boundary treatment is implemented in a dynamically adaptive quadtree grid‐based solver of the hyperbolic shallow water equations and validated against several test cases with analytical or alternative numerical solutions. The method is easy to code, accurate, and demonstrably effective in dealing with irregular computational domains in shallow flow simulations. Results are presented for still water in a basin of complicated geometry, steady hydraulic jump in an open channel with a converging sidewall, wind‐induced circulation in a circular shallow lake, and shock wave diffraction in a channel containing a contraction and expansion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a new simplified grid system that provides local refinement and dynamic adaptation for solving the 2D shallow water equations (SWEs). Local refinement is realized by simply specifying different subdivision levels to the cells on a background uniform coarse grid that covers the computational domain. On such a non‐uniform grid, the structured property of a regular Cartesian mesh is maintained and neighbor information is determined by simple algebraic relationships, i.e. data structure becomes unnecessary. Dynamic grid adaptation is achieved by changing the subdivision level of a background cell. Therefore, grid generation and adaptation is greatly simplified and straightforward to implement. The new adaptive grid‐based SWE solver is tested by applying it to simulate three idealized test cases and promising results are obtained. The new grid system offers a simplified alternative to the existing approaches for providing adaptive mesh refinement in computational fluid dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This paper provides a comparison of five finite element pairs for the shallow water equations. We consider continuous, discontinuous and partially discontinuous finite element formulations that are supposed to provide second‐order spatial accuracy. All of them rely on the same weak formulation, using Riemann solver to evaluate interface integrals. We define several asymptotic limit cases of the shallow water equations within their space of parameters. The idea is to develop a comparison of these numerical schemes in several relevant regimes of the subcritical shallow water flow. Finally, a new pair, using non‐conforming linear elements for both velocities and elevation (P?P), is presented, giving optimal rates of convergence in all test cases. P?P1 and P?P1 mixed formulations lack convergence for inviscid flows. P?P2 pair is more expensive but provides accurate results for all benchmarks. P?P provides an efficient option, except for inviscid Coriolis‐dominated flows, where a small lack of convergence is observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
PorAS, a new approximate‐state Riemann solver, is proposed for hyperbolic systems of conservation laws with source terms and porosity. The use of porosity enables a simple representation of urban floodplains by taking into account the global reduction in the exchange sections and storage. The introduction of the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity and momentum equations. The solution is considered to be made of rarefaction waves and is determined using the Riemann invariants. To allow a direct computation of the flux through the computational cells interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the PorAS solver to the shallow water equations is presented and several computational examples are given for a comparison with the HLLC solver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A new mesh‐patching model is presented for shallow water flow described by the 2D non‐linear shallow water (NLSW) equations. The mesh‐patching model is based on AMAZON, a high‐resolution NLSW engine with an improved HLLC approximate Riemann solver. A new patching algorithm has been developed, which not only provides improved spatial resolution of flow features in particular parts of the mesh, but also simplifies and speeds up the (structured) grid generation process for an area with complicated geometry. The new patching technique is also compatible with increasingly popular parallel computing and adaptive grid techniques. The patching algorithm has been tested with moving bores, and results of test problems are presented and compared to previous work. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
An upstream flux‐splitting finite‐volume (UFF) scheme is proposed for the solutions of the 2D shallow water equations. In the framework of the finite‐volume method, the artificially upstream flux vector splitting method is employed to establish the numerical flux function for the local Riemann problem. Based on this algorithm, an UFF scheme without Jacobian matrix operation is developed. The proposed scheme satisfying entropy condition is extended to be second‐order‐accurate using the MUSCL approach. The proposed UFF scheme and its second‐order extension are verified through the simulations of four shallow water problems, including the 1D idealized dam breaking, the oblique hydraulic jump, the circular dam breaking, and the dam‐break experiment with 45° bend channel. Meanwhile, the numerical performance of the UFF scheme is compared with those of three well‐known upwind schemes, namely the Osher, Roe, and HLL schemes. It is demonstrated that the proposed scheme performs remarkably well for shallow water flows. The simulated results also show that the UFF scheme has superior overall numerical performances among the schemes tested. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   

9.
This paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents details of a second‐order accurate, Godunov‐type numerical model of the two‐dimensional shallow water equations (SWEs) written in matrix form and discretized using finite volumes. Roe's flux function is used for the convection terms and a non‐linear limiter is applied to prevent unwanted spurious oscillations. A new mathematical formulation is presented, which inherently balances flux gradient and source terms. It is, therefore, suitable for cases where the bathymetry is non‐uniform, unlike other formulations given in the literature based on Roe's approximate Riemann solver. The model is based on hierarchical quadtree (Q‐tree) grids, which adapt to inherent flow parameters, such as magnitude of the free surface gradient and depth‐averaged vorticity. Validation tests include wind‐induced circulation in a dish‐shaped basin, two‐dimensional frictionless rectangular and circular dam‐breaks, an oblique hydraulic jump, and jet‐forced flow in a circular reservoir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
A semi‐implicit finite difference model based on the three‐dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi‐implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
A staggered spectral element model for the solution of the oceanic shallow water equations is presented. We introduce and compare both an implicit and an explicit time integration scheme. The former splits the equations with the operator-integration factor method and solves the resulting algebraic system with generalized minimum residual (GMRES) iterations. Comparison of the two schemes shows the performance of the implicit scheme to lag that of the explicit scheme because of the unpreconditioned implementation of GMRES. The explicit code is successfully applied to various geophysical flows in idealized and realistic basins, notably to the wind-driven circulation in the North Atlantic Ocean. The last experiment reveals the geometric versatility of the spectral element method and the effectiveness of the staggering in eliminating sprious pressure modes when the flow is nearly non-divergent.  相似文献   

14.
Flooding due to the failure of a dam or dyke has potentially disastrous consequences. This paper presents a Godunov‐type finite volume solver of the shallow water equations based on dynamically adaptive quadtree grids. The Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored (HLLC) scheme is used to evaluate interface fluxes in both wet‐ and dry‐bed applications. The numerical model is validated against results from alternative numerical models for idealized circular and rectangular dam breaks. Close agreement is achieved with experimental measurements from the CADAM dam break test and data from a laboratory dyke break undertaken at Delft University of Technology. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

15.
Two‐dimensional shallow water models with porosity appear as an interesting path for the large‐scale modelling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the floodplain. The introduction of a porosity into the two‐dimensional shallow water equations leads to modified expressions for the fluxes and source terms. An extra source term appears in the momentum equation. This paper presents a discretization of the modified fluxes using a modified HLL Riemann solver on unstructured grids. The source term arising from the gradients in the topography and in the porosity is treated in an upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head loss in urban areas. An application example is presented, where the large scale model with porosity is compared to a refined flow model containing obstacles that represent a schematic urban area. The quality of the results illustrates the potential usefulness of porosity‐based shallow water models for large scale floodplain simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The concept of fully adaptive multiscale finite volume methods has been developed to increase spatial resolution and to reduce computational costs of numerical simulations. Here grid adaptation is performed by means of a multiscale analysis based on biorthogonal wavelets. In order to update the solution in time we use a local time stepping strategy that has been recently developed for hyperbolic conservation laws. The adaptive multiresolution scheme is now applied to two‐dimensional shallow water equations with source terms. The efficiency of the scheme is demonstrated on several problems with a general geometry, including circular damp breaks, oblique hydraulic jump, supercritical channel flows encountering sudden change in cross‐section, and, finally, the bore wave and its interactions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
High-order finite volume schemes for conservation laws are very useful in applications, due to their ability to compute accurate solutions on quite coarse meshes and with very few restrictions on the kind of cells employed in the discretization. For balance laws, the ability to approximate up to machine precision relevant steady states allows the scheme to compute accurately, also on coarse meshes, small perturbations of such states, which are very relevant for many applications. In this paper, we propose third- and fourth-order accurate finite volume schemes for the shallow water equations. The schemes have the well-balanced property thanks to a path-conservative approach applied to an appropriate nonconservative reformulation of the equations. High-order accuracy is achieved by designing truly two-dimensional (2D) reconstruction procedures of the central WENO (CWENO ) type. The novel schemes are tested for accuracy and well-balancing and shown to maintain positivity of the water height on wet/dry transitions. Finally, they are applied to simulate the Tohoku 2011 tsunami event.  相似文献   

18.
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume‐integrated average (VIA) for each mesh cell, the surface‐integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi‐Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux‐based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non‐oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A finite volume‐based numerical technique is presented concerning the sensitivity of the solution of the one‐dimensional Shallow Water Equations with scalar transport. An approximate Riemann solver is proposed for direct sensitivity calculation even in the presence of discontinuous solutions. The Shallow Water Sensitivity Equations are first derived as well as the expressions of the sensitivity source terms, initial and boundary conditions. The numerical technique is then detailed and application examples are provided to assess the method's efficiency in estimating the sensitivity to different parameters (friction coefficient and initial and boundary conditions). The application of the dam‐break problem to a trapezoidal channel is also provided. The comparison with the analytical solution and the classical empirical approach illustrates the usefulness of the direct sensitivity calculation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A simple scheme is developed for treatment of vertical bed topography in shallow water flows. The effect of the vertical step on flows is modelled with the shallow water equations including local energy loss terms. The bed elevation is denoted with zb for the left and zb+ for the right values at each grid point, hence exactly representing a discontinuity in the bed topography. The surface gradient method (SGM) is generalized to reconstruct water depths at cell interfaces involving a vertical step so that the fluxes at the cell interfaces can accurately be calculated with a Riemann solver. The scheme is verified by predicting a surge crossing a step, a tidal flow over a step and dam‐break flows on wet/dry beds. The results have shown good agreements compared with analytical solutions and available experimental data. The scheme is efficient, robust, and may be used for practical flow calculations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号