首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical and electrocatalytic properties of two synthetic imidazole analogues of the redox cofactor pyrroloquinoline quinone (PQQ) were evaluated. Cyclic voltammetry measurements as a function of pH indicated that both 4,5‐dihydro‐4,5‐dioxo‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 1 ) and 4,5‐dihydro‐4,5‐dioxo‐2‐methyl‐1H‐imidazolo[5,4‐f]quinoline‐7,9‐dicarboxylic acid ( 2 ) undergo a reversible reduction of the o‐quinone moiety below pH 8 with potentials slightly more positive than those observed for PQQ. Upon incorporation into a polypyrrole membrane on the tip of a glassy carbon electrode, 1 and 2 exhibited electrocatalytic properties sufficient for the indirect amperometric detection of cysteine. The response for cysteine was linear up to 1 mM over a wide pH range. Detection limits (S/N=3) were in the μM range and dependent on the solution pH. Interference from redox active species such as dopamine and uric acid were minimized by the pH‐dependent redox potentials of 1 and 2 and thus the ability to tune the detection potential.  相似文献   

2.
Electrocatalysis of water oxidation by 1.54 nm IrOx nanoparticles (NPs) immobilized on spectroscopic graphite electrodes was demonstrated to proceed with a higher efficiency than on all other, hitherto reported, electrode supports. IrOx NPs were electrodeposited on the graphite surface, and their electrocatalytic activity for water oxidation was correlated with the surface concentrations of different redox states of IrOx as a function of the deposition time and potential. Under optimal conditions, the overpotential of the reaction was reduced to 0.21 V and the electrocatalytic current density was 43 mA cm?2 at 1 V versus Ag/AgCl (3 M KCl) and pH 7. These results beneficially compete with previously reported electrocatalytic oxidations of water by IrOx NPs electrodeposited onto glassy carbon and indium tin oxide electrodes and provide the basis for the further development of efficient IrOx NP‐based electrocatalysts immobilized on high‐surface‐area carbon electrode materials.  相似文献   

3.
Ligand‐protected gold nanoclusters (AuNCs) have emerged as a new class of electrochemiluminescence (ECL) luminophores for their interesting catalytic and emission properties, although their quantum yield (ΦECL) in aqueous medium is low with a poor mechanistic understanding of the ECL process. Now it is shown that drying AuNCs on electrodes enabled both enhanced electrochemical excitation by an electrocatalytic effect, and enhanced emission by aggregation‐induced ECL (AIECL) for 6‐aza‐2‐thiothymine (ATT) protected AuNCs with triethylamine (TEA) as a coreactant. The dried ATT‐AuNCs/TEA system resulted in highly stable visual ECL with a ΦECL of 78 %, and a similar enhancement was also achieved with methionine‐capped AuNCs. The drying enabled dual‐enhancement mechanism has solved a challenging mechanistic problem for AuNC ECL probes, and can guide further rational design of ECL emitters.  相似文献   

4.
Catechol can be oxidized electrochemically to its corresponding o‐benzoquinone. The electrogenerated quinone can be deposited by cycling the potential at the surface of glassy carbon electrodes. We have studied the electrochemical features of films derived from catechol by cyclic voltammetry. The electrodeposited film shows stable reversible redox response, dependent on pH as anticipated for quinone/catechol functionalities. Glassy carbon electrodes covered with a film derived from catechol exhibit catalytic activity in the electrooxidation of NADH at a low potential. The catalytic current is proportional to the concentration of NADH over the range 0.02–0.34 mM.  相似文献   

5.
The influence of para‐, ortho‐, and meta‐phenylenediamine (p‐, o‐, and m‐PDA) additions on the electrochemical synthesis of polyaniline has been investigated by the use of cyclic voltametry. It has been found that small additions (1 and 5 mmol L?1) of PDA monomers influence significantly the polymerization rate. Whereas p‐PDA increases the polymerization rate, the addition of o‐ or m‐PDA slows it down. Therefore, a different number of potential cycling is necessary to obtain similar thickness of layers. The layers exhibit very different morphology, which changes from “spaghetti‐like” for polyaniline to “sponge‐like” for p‐PDA, to “pebble‐like” for o‐PDA and to “cauliflower‐like” for m‐PDA additions, respectively. The catalytic effect of the synthesized polymer layers has been tested. It has been found that all the layers exhibit catalytic effect in lowering the redox potential of hydroquinone/quinone tested reaction, but the rate of the electrocatalytic reaction varies depending on the PDA monomer added. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1599–1608, 2004  相似文献   

6.
The preparation and electrocatalytic behavior of glassy carbon electrodes modified with three different cobalt porphyrin complexes were investigated. The electrocatalytic ability of the modified electrodes for the reduction of dioxygen to hydrogen peroxide and water in air‐saturated aqueous solutions was examined by cyclic voltammetry and chronoamperometry techniques. The porphyrin‐adsorbed glassy carbon electrodes possess excellent electrocatalytic abilities for dioxygen reduction with overpotential about 0.5 V lower than that at a plain glassy carbon electrode. The experimental parameters were optimized and the mechanism of the catalytic process was discussed. The possible effects of the electron‐donating properties of groups in the meso‐position of the porphyrin ring were investigated.  相似文献   

7.
Electrochemically platinum plated aluminum (Al/Pt) was used as an electrode substrate for the electropolymerization of aminophenols and fabrication of composite electrodes based on platinum nano-particles. The poly(o-aminophenol) (PoAP), poly(m-aminophenol) (PmAP), and poly(p-aminophenol) (PpAP) were synthesized on the Al/Pt electrode, and further modification was performed by deposition of platinum nano-particles onto polymer matrixes. The electrochemical and morphological characteristic of the composed electrodes were carried out by cyclic voltammetry and scanning electron microscopy, respectively. The electrocatalytic oxidation of methanol on the composite electrodes was studied by cyclic voltammetry in 0.1 M sulfuric acid as supporting electrolyte. It was found that the Al/Pt/PoAP electrode incorporated Pt nano-particles (Al/Pt/PoAP/Pt) exhibits a higher electrocatalytic activity for the oxidation of methanol than the Al/Pt/PmAP/Pt and Al/Pt/PpAP/Pt electrodes. On the other hand, a higher catalytic current for methanol oxidation was found on the Al/Pt/PoAP/Pt electrode in comparison to bulk Pt and Al–Pt (Al with 0.2 mg cm−2 of Pt particles) electrodes. The effects of various parameters such as thickness of the polymer film, concentration of the monomer, Pt loading method and the Pt amounts, concentration of the methanol, and the medium temperature were studied on the electrooxidation of methanol. The long-term stability of the modified electrode has also been investigated.  相似文献   

8.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

9.
Protocatechuic acid (= 3,4‐dihydroxybenzoic acid; 1 ) exhibits a significantly slow DPPH (= 2,2‐diphenyl‐1‐picrylhydrazyl) radical‐scavenging reaction compared to its esters in alcoholic solvents. The present study is aimed at the elucidation of the difference between the radical‐scavenging mechanisms of protocatechuic acid and its esters in alcohol. Both protocatechuic acid ( 1 ) and its methyl ester 2 rapidly scavenged 2 equiv. of radical and were converted to the corresponding o‐quinone structures 1a and 2a , respectively (Scheme). Then, a regeneration of catechol (= benzene‐1,2‐diol) structures occurred via a nucleophilic addition of a MeOH molecule to the o‐quinones to yield alcohol adducts 1f and 2c , respectively, which can scavenge additional 2 equiv. of radical. However, the reaction of protocatechuic acid ( 1 ) beyond the formation of the o‐quinone was much slower than that of its methyl ester 2 . The results suggest that the slower radical‐scavenging reaction of 1 compared to its esters is due to a dissociation of the electron‐withdrawing carboxylic acid function to the electron‐donating carboxylate ion, which decreases the electrophilicity of the o‐quinone, leading to a lower susceptibility towards a nucleophilic attack by an alcohol molecule.  相似文献   

10.
The utilization of the capsaicin modified carbon nanotube modified basal‐plane pyrolytic graphite electrode or p‐chloranil modified carbon paste electrodes are presented for the determination of pharmaceutical compounds containing amine functionality, such as benzocaine and lidocaine. In detection of benzocaine at a capsaicin modified electrode, the guaiacol functional group is irreversibly electrochemically oxidized to form the o‐quinone derivative which then undergoes nucleophilic attack by the aromatic amine group in benzocaine via a 1,4‐Michael addition mechanism forming a catechol‐amine adduct. The electrochemically initiated formation of the capsaicin‐benzocaine adduct causes a linear decrease in the voltammetric signal corresponding to capsaicin which correlates to the added concentration of benzocaine.  相似文献   

11.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

12.
Protocatechuic acid esters (= 3,4‐dihydroxybenzoates) scavenge ca. 5 equiv. of radical in alcoholic solvents, whereas they consume only 2 equiv. of radical in nonalcoholic solvents. While the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents as compared to that in nonalcoholic solvents is due to a nucleophilic addition of an alcohol molecule at C(2) of an intermediate o‐quinone structure, thus regenerating a catechol (= benzene‐1,2‐diol) structure, it is still unclear why protocatechuic acid esters scavenge more than 4 equiv. of radical (C(2) refers to the protocatechuic acid numbering). Therefore, to elucidate the oxidation mechanism beyond the formation of the C(2) alcohol adduct, 3,4‐dihydroxy‐2‐methoxybenzoic acid methyl ester ( 4 ), the C(2) MeOH adduct, which is an oxidation product of methyl protocatechuate ( 1 ) in MeOH, was oxidized by the DPPH radical (= 2,2‐diphenyl‐1‐picrylhydrazyl) or o‐chloranil (= 3,4,5,6‐tetrachlorocyclohexa‐3,5‐diene‐1,2‐dione) in CD3OD/(D6)acetone 3 : 1). The oxidation mixtures were directly analyzed by NMR. Oxidation with both the DPPH radical and o‐chloranil produced a C(2),C(6) bis‐methanol adduct ( 7 ), which could scavenge additional 2 equiv. of radical. Calculations of LUMO electron densities of o‐quinones corroborated the regioselective nucleophilic addition of alcohol molecules with o‐quinones. Our results strongly suggest that the regeneration of a catechol structure via a nucleophilic addition of an alcohol molecule with a o‐quinone is a key reaction for the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents.  相似文献   

13.
In Wittig reaction of some α‐methyl‐ and α‐methylene‐substituted phosphorus ylides with o‐quinones, benzo[b]furan derivatives were obtained via the cyclization of the o‐vinylphenols, initially formed from the tautomerization of the corresponding intermediate o‐quinone methides.  相似文献   

14.
2‐Amino‐4H‐chromenes were synthesized in moderate to good yields by the reaction of o‐quinone methides photochemically generated from o‐(dimethylaminomethyl)phenols with malononitrile. This method was applicable to the synthesis of fluorinated chromenes that were difficult to obtain by other methods. In addition, o‐(hydroxymethyl)phenols could be used for the reaction in the presence of tertiary amine bases.  相似文献   

15.
Research into efficient synthesis, fundamental properties, and potential applications of phosphorene is currently the subject of intense investigation. Herein, solution‐processed phosphorene or few‐layer black phosphorus (FL‐BP) sheets are prepared using a microwave exfoliation method and used in photoelectrochemical cells. Based on experimental and theoretical (DFT) studies, the FL‐BP sheets are found to act as catalytically active sites and show excellent electrocatalytic activity for triiodide reduction in dye‐sensitized solar cells. Importantly, the device fabricated based on the newly designed cobalt sulfide (CoSx) decorated nitrogen and sulfur co‐doped carbon nanotube heteroelectrocatalyst coated with FL‐BP (FL‐BP@N,S‐doped CNTs‐CoSx) displayed an impressive photovoltaic efficiency of 8.31 %, outperforming expensive platinum based cells. This work paves the way for using phosphorene‐based electrocatalysts for next‐generation energy‐storage systems.  相似文献   

16.
A new stable sterically hindered o‐quinone annelated with a 1,2‐dithiete ring was prepared by using mild conditions. The skeleton of the compound comprises diolate and dithiolate functions that have the potential to bind metals leading to the corresponding complexes. The reactivity of this compound as a ligand with respect to both coordination sites was studied. Reactions with metals indicate that the o‐quinone function is reduced in the first stage to give semiquinonate and catecholate complexes. The dithiolate coordination site was involved in the reaction in a few cases only after diolate was bound. A trinuclear manganese complex with coordination on both sites was obtained and characterized by EPR spectroscopy. The electrochemical study of this quinone fused with dithiete is reported.  相似文献   

17.
This study investigates the electrocatalytic oxidation of glucose and some other carbohydrates on nickel/poly(o‐aminophenol) modified carbon paste electrode as an enzyme free electrode in alkaline solution. Poly(o‐aminophenol) was prepared by electropolymerization using a carbon paste electrode bulk modified with o‐aminophenol and continuous cyclic voltammetry in HClO4 solution. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the capability of this modified electrode for catalytic oxidation of glucose and other carbohydrates was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for each carbohydrate were calculated. Also, the electrocatalytic oxidation peak currents of all tested carbohydrates exhibit a good linear dependence on concentration and their quantification can be done easily.  相似文献   

18.
A direct decarboxylative strategy for the generation of aza‐o‐quinone methides (aza‐o‐QMs) by N‐heterocyclic carbene (NHC) catalysis has been discovered and explored. This process requires no stoichiometric additives in contrast with current approaches. Aza‐o‐QMs react with trifluoromethyl ketones through a formal [4+2] manifold to access highly enantioenriched dihydrobenzoxazin‐4‐one products, which can be converted to dihydroquinolones through an interesting stereoretentive aza‐Petasis–Ferrier rearrangement sequence. Complementary dispersion‐corrected density functional theory (DFT) studies provided an accurate prediction of the reaction enantioselectivity and lend further insight to the origins of stereocontrol. Additionally, a computed potential energy surface around the major transition structure suggests a concerted asynchronous mechanism for the formal annulation.  相似文献   

19.
The treatment of di‐o‐quinone 4,4′‐(ethane‐1,2‐diyl)‐bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH2–CH2–Q, 1 ) leads to its rearrangement to form di‐p‐quinomethide 4,4′‐(ethane‐1,2‐diylidene)bis(2‐hydroxy‐3,6‐di‐tert‐butyl‐cyclohexa‐2,5‐dienone) ( 2 ). The subsequent oxidation of 2 by an alkaline solution of K3[Fe(CN)6] yielded the new di‐o‐quinone 4,4′‐(ethene‐1,2‐diyl)bis(3,6‐di‐tert‐butyl‐o‐benzoquinone) (Q–CH=CH–Q, 3 ), which contains an ethylene bridge. The formation of mono‐ and poly‐reduced derivatives of 2 and 3 with potassium, thallium was studied by EPR technique. The dinuclear thallium derivative of 3 , Tl(SQ–CH=CH–SQ)Tl, was found to exist in the diamagnetic quinomethide form. The most stable derivatives of 2 and 3 are triphenyltin(IV) bis‐p‐quinomethide‐phenolate ( 4 ) and triphenylantimony(V) bis‐catecholate ( 5 ), which have been synthesized and isolated. The molecular structures of 2 , 3 , and 5 were characterized by single‐crystal X‐ray diffraction.  相似文献   

20.
The development of high‐efficiency electrocatalysts for large‐scale water splitting is critical but also challenging. In this study, a hierarchical CoMoSx chalcogel was synthesized on a nickel foam (NF) through an in situ metathesis reaction and demonstrated excellent activity and stability in the electrocatalytic hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The high catalytic activity could be ascribed to the abundant active sites/defects in the amorphous framework and promotion of activity through cobalt doping. Furthermore, the superhydrophilicity and superaerophobicity of micro‐/nanostructured CoMoSx/NF promoted mass transfer by facilitating access of electrolytes and ensuring fast release of gas bubbles. By employing CoMoSx/NF as bifunctional electrocatalysts, the overall water splitting device delivered a current density of 500 mA cm?2 at a low voltage of 1.89 V and maintained its activity without decay for 100 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号