首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张曙光  冯云龙 《中国化学》2009,27(5):877-881
四唑酸(–CN4H)与羧酸(–COOH)具有相似的酸性。对苯酚四唑硫酮(H2L)可以作为单齿(–S或–N)或双齿(–N, N或–N, S)配体与金属离子配位形成配位化合物。合成了4个以H2L为配体的金属(II)配合物:Co(HL)2(Py)2(H2O)2 (1), [Mn(HL)2(H2O)4]·2H2O (2), Mn(HL)2(Phen)2 (3), and [Zn(HL)2(Phen)2]·0.5H2O·1.5CH3OH (4),并用X−射线单晶衍射法测定了晶体结构。晶体结构分析表明,在这些配合物中所有的中心金属原子均呈现六配位的八面体构型。在配合物1和2中,HL–配体以氧原子与中心金属原子配位,而在配合物3和4中HL–配体则以硫原子与中心金属原子配位。  相似文献   

2.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

3.
Four complexes with supramolecular architectures, namely, MZCA · 3H2O ( 1 ), [Zn(H2O)6]2+ · [MZCA]2 · [H2O]6 ( 2 ), [Mn(MZCA)2(H2O)4] · 2H2O ( 3 ), and [Ni(MZCA)2(H2O)4] · 2H2O ( 4 ) [MZCA = 3‐(carboxymethyl)‐2, 7‐dimethyl‐3H‐benzo[d]imidazole‐5‐carboxylic acid], were synthesized and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Complexes 1 and 2 display a remarkable 3D network with 1D hydrophilic channels. Complexes 3 and 4 are isostructural and exhibit a 3D structure encapsulating 1D 24‐membered ring microporous channels. The UV/Vis and fluorescent spectra were measured to characterize complexes 1 – 4 . The thermal stability of complexes 2 – 4 were also examined.  相似文献   

4.
Three metal coordination polymers {[Co(L)2(H2O)2]2+ · 2NO3}n ( 1 ), {[Mn(L)2(H2O)2]2+ · 2Cl · 3H2O}n ( 2 ), and [ZnL(ba)2]n ( 3 ) [L = 3,5‐bis(imidazole‐1‐yl)pyridine and Hba = benzoic acid] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a one‐dimensional (1D) chain structure. Adjacent chains are connected by hydrogen bonding and nitrate groups to form a 3D network. Complex 2 features a 2D layer structure. A three‐dimensional network is constructed through the cluster consisting of two chloride ions and three water molecules. Complex 3 shows a 1D zigzag chain structure that further twists together to form a 3D network. The X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, the luminescent properties of 1 – 3 were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the three complexes.  相似文献   

5.
Two coordination polymers, [Cd(Heidc)(bpp)]n ( 1 ) and [Zn3 (eidc)2(bpp)(H2O)2] · 2H2O}n ( 2 ) (H3eidc = 2‐ethyl‐4,5‐imidazole dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane) were hydrothermally synthesized and characterized by elemental analysis, IR, spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 features a 2D layer formed by C–H ··· π stacking interactions between adjacent chains, whereas compound 2 shows a 3D (83)2(85.10)‐tfc framework constructed of the 2D (6,3) layer. The result demonstrates that the central metal atoms play a key role in governing the coordination motifs. Moreover, solid‐state properties such as thermal stabilities and photoluminescence of 1 and 2 were also investigated.  相似文献   

6.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

7.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

8.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

9.
The compounds [Cu(pmda)(crea)]·H2O ( 1 ), [Zn(pmda)(crea)]·H2O ( 2 ) and [Co(pmda)(crea)(H2O)]·H2O ( 3 ) were prepared and characterized by thermal, spectral and X‐ray diffraction methods. In compounds 1 and 2 the MII coordination is of type 4+1 and approaches to a trigonal bipyramid (71.85 and 86.18 %, respectively) with rather linear N(pmda)‐MII‐N(crea) trans‐apical angles, but with different longest coordination bond (Cu‐O(pmda) or Zn‐N(apliphatic, pmda), respectively). Both compounds are isotypic and one intra‐molecular interligand N‐H···O interaction reinforces the molecular recogniton crea‐MII(pmda) chelate. In contrast, the compound 3 exhibits an octahedral coordination, imposed by the 3d7 electronic configuration of the cobalt(II) atom, and the crea‐chelate recognition involves the Co‐N(crea) coordination bond and one intramolecular ‘bifurcated’ H‐bonding interaction between one N‐H(crea) bond and one O(pmda) plus the O(aqua) atoms as ‘acceptors’.  相似文献   

10.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules.  相似文献   

11.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

12.
Based on the bis‐triazole ligand 2, 6‐bis(1, 2,4‐triazole‐4‐yl)pyridine (L), the triazole‐iron(II) complexes [Fe(L)2(dca)2(H2O)2] · 2H2O ( 1 ) (Nadca = sodium dicyanamide), {[Fe(μ2‐L)2(H2O)2]Cl2}n ( 2 ), and {[Fe(μ2‐L)2(H2O)2](ClO4)2 · L · H2O}n ( 3 ) were isolated by solvent diffusion methods. When iron(II) salts and Nadca were used, compound 1 was isolated, which contains mononuclear Fe(L)2(dca)2(H2O)2 units. When FeCl2 or FeClO4 were used, one‐dimensional (1D) cation iron(II) chains ( 2 ) and two‐dimensional (2D) cation iron(II) networks ( 3 ) were isolated indicating anion directing structural diversity. Moreover, variable‐temperature magnetic susceptibility data of 1 – 3 were recorded in the temperature range 2–300 K. The magnetic curve of complex 2 was fitted by using the classical spin Heisenberg chain model indicating anti‐ferromagnetic interactions (J = –5.31 cm–1). Obviously complexes 1 – 3 show no detectable thermal spin crossover behaviors, the lack of spin‐crossover behavior may be correlated with FeN4O2 coordination spheres in 1 – 3 .  相似文献   

13.
The reaction of (Z)‐2‐[amino(pyridine‐2‐yl)methylene]hydrazonecarbothioamide (HAm4DH) with Mn(ClO4)2·6H2O afforded different mononuclear or polynuclear manganese(II) complexes, the nature of which apparently depended on the solvent used. For example, in ethanol a compound of formula [Mn(HAm4DH)2](ClO4)2 ( 1 ) was obtained, where HAm4DH coordinates as a common tridentate NNS donor, but the [Mn(bpy)2(NCS)2] complex ( 2 ) (bpy = 2,2'‐bipyridine) has also been obtained – probably due to C–N bond cleavage of the thiosemicarbazone. Nevertheless, in a basic aqueous medium [Mn(bpy)3](ClO4)2·0.5bpy ( 3 ) is formed and there is structural evidence for chemical transformations of the thiosemicarbazone promoted by MnII. Thus, the sulfate in {[Mn(py)4Mn(py)2(H2O)2(μ‐SO4)2]·4H2O}n ( 4 ) or sulfate and cyclooctasulfur in [Mn(pta)2(pdo)]4(SO4)2·4H2O·S8] ( 5 ), where pta is 3‐(pyridin‐2‐yl)‐1,2,4‐triazol‐5‐amine and pdo is (2R,4R/2S,4S)‐pentane‐2,4‐diolato, arise from the desulfuration and oxidation of the thiosemicarbazone ligand. The structures of complexes 2 to 5 were established by single‐crystal X‐ray diffraction. The formation of pta is the result of the oxidative cyclization of HAm4DH. In the polynuclear complex 4 , the sulfate acts as an (O,O') bridge between alternating Mn(py)2(H2O)2 and Mn(py)4 centers. In the tetranuclear complex 5 , pta acts as a bischelating ligand through the N‐pyridine and N‐triazole, and pdo act as a bridge between two manganese atoms. It is also noteworthy that in complexes 4 and 5 hydrogen bonds give rise to different self‐assembly behaviour that leads to complicated supramolecular structures.  相似文献   

14.
The one-pot hydrothermal reaction of CuCl2 with H2CPOA and 4,4'-bpy results in two new coordination polymers, [Cu(CPOA)(4,4'-bpy)(H2O)2]·1.5H2O (1) and [Cu2(HCPOA)4(4,4'-bpy)4] (2) (H2CPOA=4-carboxyphenoxy acetic acid, 4,4'-bpy=4,4'-bipyridine) since CPOA^2- anions reach equilibrium with HCPOA^- anions in the reaction system. The crystal structure of 1 shows a triple interpenetration CdSO4-like net with 1D channel, in which lattice water molecules are located. Complex 2 is a ladder-like 1D double chain structure assembled through coordination bonds and O—H…N hydrogen bonds.  相似文献   

15.
The coordination polymers (CPs), [Ni(L)(H2O)4]n ( 1 ), [Co(HL)2(H2O)2]n ( 2 ), {[Cu(L)(H2O)3] · H2O}n ( 3 ), [Mn(L)(H2O)2]n ( 4 ), [Cd(L)(H2O)2]n ( 5 ), and {[Zn2(L)2] · H2O}n ( 6 ), were solvothermally synthesized by employing the imidazol‐carboxyl bifunctional ligand 4‐(1H‐imidazol‐1‐yl) phthalic acid (H2L). Single‐crystal X‐ray diffraction indicated that the L2–/HL ligands display various coordination modes with different metal ions in 1 – 6 . Complexes 1 and 2 show one‐dimensional (1D) chain structures, whereas complexes 3 – 6 show 2D layered structures. The magnetic properties of these complexes were investigated. Complexes 1 and 3 indicate weak ferromagnetic interactions, whereas complexes 2 and 4 demonstrate antiferromagnetic interactions. In addition, luminescence properties of 5 and 6 were measured and studied in detail.  相似文献   

16.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

17.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

18.
Two new nickel(II) complexes, [Ni(4, 4′‐bpy)(H2O)4]n · n(cpp) · 0.5nH2O ( 1 ) and [Ni(cpp)(4, 4′‐bpy)(H2O)2]n ( 2 ) [4, 4′‐bpy = 4, 4′‐bipyridine, H2cpp = 3‐(4‐carboxyphenyl)propionic acid] were synthesized and characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy, and thermal analysis. In complex 1 , NiII ions are bridged by 4, 4′‐bpy into 1D chains, and cpp ligands are not involved in the coordination, whereas in complex 2 , cpp ligands adopt a bis(monodentate) mode and link NiII ions into 2D (4, 4) grids with the help of 4, 4′‐bpy ligands. Triple interpenetration occurs, which results in the formation of a complicated 3D network. The difference in the structures of the two complexes can be attributed to the different reaction temperatures and bases.  相似文献   

19.
Coordination polymers (CPs) have been widely studied because of their diverse and adjustable topologies and wide‐ranging applications in luminescence, chemical sensors, magnetism, photocatalysis, gas adsorption and separation. In the present work, two coordination polymers, namely poly[(μ5‐benzene‐1,3,5‐tricarboxylato‐κ6O1:O1′:O3:O3:O5,O5′){μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}di‐μ3‐hydroxido‐dicobalt(II)], [Co2(C9H3O6)(OH)(C12H12N6)]n or [Co2(btc)(OH)(mtrb)]n, (1), and poly[[diaquabis(μ3‐benzene‐1,3,5‐tricarboxylato‐κ3O1:O3:O5)bis{μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}tetra‐μ3‐hydroxido‐tetracopper(II)] monohydrate], {[Cu4(C9H3O6)2(OH)2(C12H12N6)2(H2O)2]·H2O}n or {[Cu4(btc)2(OH)2(mtrb)2(H2O)2]·H2O}n, (2), were synthesized by the hydrothermal method using 1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene (mtrb) and benzene‐1,3,5‐tricarboxylate (btc3?). CP (1) exhibits a (3,8)‐coordinated three‐dimensional (3D) network of the 3,8T38 topological type, with a point symbol of {4,5,6}2{42·56·616·72·82}, based on the tetranuclear hydroxide cobalt(II) cluster [Co43‐OH)2]. CP (2) shows a (3,8)‐coordinated tfz‐d topology, with a point symbol of {43}2{46·618·84}, based on the tetranuclear hydroxide copper(II) cluster [Cu43‐OH)2]. The different (3,8)‐coordinated 3D networks based on tetranuclear hydroxide–metal clusters of (1) and (2) are controlled by the different central metal ions [CoII for (1) and CuII for (2)]. The thermal stabilities and solid‐state optical diffuse‐reflection spectra were measured. The energy band gaps (Eg) obtained for (1) and (2) were 2.72 and 2.29 eV, respectively. CPs (1) and (2) exhibit good photocatalytic degradation of the organic dyes methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation.  相似文献   

20.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号