首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of RCo(BDM1,3pn)(H2O) with light, heat, acids, electrophiles and nucleophiles were studied. (HBDM1,3pn is a mononegative, tetradentate dioxime-diimine ligand formed by condensing 2,3-butanedionemonoxime with 1,3-propanediamine in a 2/1 molar ratio; R = CH3, C2H5, n-C3H7, n-C4H9, and C6H3CH2-) Pyrolysis and photolysis of the alkyl complexes result in a cobalt(II) complex (anaerobic conditions) along with alkenes and alkanes. The major organic products from solid state pyrolysis at 200°C or photolysis in water are CH4 (R = CH3), C2H4 (R = C2H5), C3H6 (R = n-C3H7), C4H8 (R = n-C4H9) and (C6H5CH2)2 (R = C6H5CH2). No alkyl—cobalt bond cleavage occurs with acids or bases in most cases. Two exceptions are the reactions with 3 M HNO3 at 25°C and with 1 M NaOH at 52°C. Electrophiles like I2 cleave the alkyl—cobalt bond forming RI and CoIII (BDM1,3pn)I2. Nucleophilic reagents (N-) displace the H2O trans to the alkyl group to form RCo(BDM1,3pn)(N), but do not dealkylate the alkyl complex under the reaction conditions studied.  相似文献   

2.
The kinetics of hydrolysis of aliphatic ketone di-tert-butylperoxyketals R1R2C=O, R1, R2=CH3, CH3; CH3, C2H5; CH3, n-C3H7; CH3, n-C6H13; CH3, i-C5H10; CH3, i-C4H9; C2H5, i-C3H7; n-C4H9, n-C4H9; CH3, C6H5-CH2, in dioxane in the presence of H2SO4 were investigated by IR spectroscopy. It was found that the reaction is reversible and takes place according to the equation R1R2C· (OOC(CH3)3)2 + H2O;H+ R1R2C=O + 2HOOC(CH3)3. The proposed mechanism of hydrolysis includes the fast, quasiequilibrium formation of protonated peroxyketal and subsequent formation of the alkylperoxycarbenium ion. A three-parameter correlation equation is proposed for describing the initial rates of hydrolysis of R1R2C(oo-t-Bu)2 peroxyketals.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2501–2506, November, 1990.  相似文献   

3.
The reaction of 1,1,1-tris(diiodarsinomethyl)ethane, CH3C(CH2AsI2)3 (I), with i-C3H7NH2, n-C4H9NH2, C6H5NH2, p-CH3C6H4NH2 and [(CH3)3Si]2NH in the presence of (C2H5)3N as auxiliary base in THF gives the adamantane cage compounds CH3C(CH2AsNC3H7)3 (III), CH3C(CH2AsNC4H9)3 (IV), CH3C(CH2AsNC6H5)3 (V), CH3C(CH2AsNC6H4CH3)3 (VI) and CH3C[CH2AsNSi(CH3)3]3 (VII). VII is also obtained in the reaction of I with NaN[Si(CH3)3]2. The by-product (CH3)3SiO(CH2)4I (VIII) could be isolated in both syntheses of VII. All compounds have been characterized by mass spectrometry and infrared, Raman and 1H NMR spectroscopy.  相似文献   

4.
Benzyl chloride was treated with (Me3Si)3CLi to give (Me3Si)3CCH2Ph (1). A new styrene derivative, (Me3Si)3CCH2C6H4(CHCH2-p) (2), was synthesized by reaction of p-vinylbenzyl chloride with (Me3Si)3CLi in the presence of CuCl. Addition and oxidation reactions on 2 gave a series of new compounds (Me3Si)3CCH2C6H4X-p (X = CH2CH3, CHBrCH2Br, CHClCH2I, CHBrCH2I, cyclo-C3H3Cl2, CHOHCH2OH, COOH, CH2OH).  相似文献   

5.
The mass spectrometric investigation of specifically deuterium and 13C labelled 2-trimethylsilyl-l-phenoxyethanes proves that the dissociative ionization of β-silyl-substituted ethane derivatives (loss of PhO?; p-CH3C6H4O?; and C4H?9 from PhOCH2CH2SiMe3, p-MeC6H4OCH2CH2SiMe3 and CH3CH2CH(CH3)CH2-CH2SiMe3, respectively) yields the non-classical bridge ethylene trimethylsilanium ion and not the open-chain isomer. Other stable C5H13Si+? ions, characterised by collisional activation mass spectrometry, are the dimethyl n-propyl silicenium ion and the l-trimethylsilyl ethyl cation, both generated from the molecular ions of CH3CH2CH2Si(Cl)Me2 and CH3CH(Cl)SiMe3 via unimolecular loss of Cl?.  相似文献   

6.
Organometallic Compounds of the Lanthanides. 133 Synthesis and Characterization of donor-functionalised ansa -Metallocenes of Yttrium, Neodymium, Samarium, Erbium, and Lutetium The reaction of Me2SiCl2 with K[C5H4tBu], Li[C5H4SiMe3] or K[C5H3tBuMe-3] followed by treatment with K[C5H4CH2CH2NMe2] yields mixed substituted dicyclopentadienyldimethylsilanes which after double deprotonation with KH afford the dipotassium salts K2[Me2Si(C5H3tBu-3)(C5H3CH2CH2NMe2-3)] ( 1 ), K2[Me2Si · (C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)] ( 2 ), and K2[Me2Si · (C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)] ( 3 ), respectively. The reaction of 1 , 2 , or 3 with LnCl3(THF)x (Ln = Y, La, Nd, Sm, Er, Lu) leads to the complexes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 4 a ), Sm ( 4 c ), Lu ( 4 e )], [Me2Si(C5H3SiMe3-3)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 5 a ), Sm ( 5 c ), Lu ( 5 e )], and [Me2Si(C5H2tBu-3-Me-5)(C5H3CH2CH2NMe2-3)]LnCl [Ln = Y ( 6 a ), Nd ( 6 b ), Sm ( 6 c ), Er ( 6 d ), Lu ( 6 e )], respectively. Alkylation of 4 a , 4 c , 5 a , and 6 b , 6 e with LiCH3, LiCH2SiMe3, and LiCH(SiMe3)2 produces the alkylmetallocenes [Me2Si(C5H3tBu-3) · (C5H3CH2CH2NMe2-3)]LnR [R = CH3, Ln = Y ( 7 a ), Sm ( 7 c ); R = CH2SiMe3, Ln = Y ( 8 a )], [Me2Si(C5H3SiMe3-3) · (C5H3CH2CH2NMe2-3)]YCH3 ( 9 a ), and [Me2Si(C5H2tBu3-Me-5)(C5H3CH2CH2NMe2-3)]LnR (R = CH3, Ln = Lu ( 10 e ); R = CH2SiMe3, Ln = Lu ( 11 e ); R = CH(SiMe3)2, Ln = Nd ( 12 b ), Lu ( 12 e )], respectively. All new compounds were characterized by elemental analyses, NMR spectroscopy and mass spectrometry. The molecular structure of 6 c and 6 e was determined by single crystal X-ray structure analysis.  相似文献   

7.
Cyclic voltammetry has been employed to study the diffusive, irreversible platinum(II) → platinum(0) reduction of three sets of structurally related complexes: cis-[PtCl2P{p-C6H4X}3)2] (X = H, CH3, Cl, F, OCH3, N(CH3)2); cis-[PtCl2(PPh2R)2] (R = CH3, n-C3H7, n-C5H11, n-C6H13, n-C12H25) and cis-[PtCl2(PR3)2] (R = CH3, C2H5, CH2ch2CN). Relationships between the peak potentials for the Pt(II) → Pt(0) reduction and thermodynamic parameters which measure the electronic properties of the ligands are shown to exist for complexes of P{p-C6H4X}3 ligands, implying a thermodynamic origin for the sensitivity of the peak potentials to structural change. Complexes of both P{p-C6H4X}3 and PPh2R ligands show correlations between peak potentials for reduction and the 31P{1H} NMR spectroscopic parameter, 1J(195Pt, 31P). Correlations with values of δ(31P) exist in both cases, but a correlation with the coordination chemical shift, Δδ(31P), exists for complexes of PPh2R, and not for complexes of P{C6H4X}3. Complexes of PR3 ligands show no correlation between the peak potentials measured for the Pt(II) → Pt(0) reduction and electronic or spectroscopic parameters, except possibly 1J(195Pt, 31P).  相似文献   

8.
Rates of cleavage of Me3MR compounds (M = Si, R = m-ClC6H4CH2, p-NO2C6H4CH2, Ph2CH, 9-fluorenyl, and 2-benzothienyl; M = Sn, R = m-ClC6H4CH2, Ph2CH, 2-benzothienyl) have been measured in Me2SO/MeOH/MeONa, Me2SO/EtOH/EtONa, and Me2SO/H2O/HONMe4 media containing varying amounts of the hydroxylic component. The variations in the slopes of the log krel  H plots are consistent with the view that a water or alcohol molecule provides electrophilic assistance in the rate-determining step for the tin compounds with R = m-ClC6H4CH2 and 2-benzothienyl, while for the silicon compounds, and possibly for the tin compound with R = Ph2CH, carbanions are liberated in the rate-determining step.  相似文献   

9.
2,4-Bismethylthio-1,3,2,4-dithiadiphosphetane 2,4- disulfide, IIa, is prepared from 0,0-dimethyldithiophosphoric acid, Ia, and P4S10 at 160°C. 2,4-Bis(4-phenoxyphenyl)-1,3,2,4- dithiadiphsophetane 2,4-disulfide, IIc, and 2,4-bis(4-phenylthiolophenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide, IId, are prepared at l60°C from P4 S10 and diphenylether and diphenylsulfides, respectively. Carboxylic acids RCOOH(R = CH3 C2H5, n-C3H7, n-C4H9, C6H5CH2, C6H8) react with compound Ia at 130°C to give the corresponding methyl dithioesters. Carboxylic acids RCOOH (R = C6H8-CH2, C6H8) react with compound Ib at 200°C for 15 min to give the corresponding ethyl dithioesters, while low boiling acids (R = CH3, C2H8, n-C3H7) yielded mixtures of the corresponding ethyl dithioester and ethyl carboxylate. Carboxylic acid chlorides RCOCl (R = ClCH2, C2H5, t-C4H5 C6H5CH2, C6H5, P-NO2C6H4) react with compound IIa at 80°C to give the corresponding methyl dithioesters in good yields. S-Substituted thioesters react with IIC at 85°C to give the corresponding dithioesters in good yields. Dihydro2(3H)-furanone, VI, and 5-methyl-2(3H)-furanone, VII, react with IIa at 80°C; to dihydro-2(3H)-thiophenethione, VIII and 2,2'-dithiobis(5-methyl thiophene),IX, respectively. Also XI reacts with IIa,IIc, and IId to give VIII in nearly quantitative yields.  相似文献   

10.
The new ligand C5Me4H reacts with [TiCl3] or [ZrCl4] to afford the dichlor complexes [(C5Me4H)2MCl2] (M  Ti, Zr) and the trichloro complex [(C5Me4H)-TiCl3]. Treatment of these complexes with RLi, or their reduction under CO, gives the derivatives [(C5Me4H)1)MR2] (R  CH3, C6H5, p-C6H4CH3, CO). The preparation of the new series of compounds, [(C5Me4H)(C5H5)TiR2], is also described. The electronic effects of the C5Me4H ligand resemble closely those of C5Me5. The coalescence of the 1H and 13C NMR aromatic signals indicates that rotation of the aromatic nucleus around the metal-carbon bond is restricted owing to the large size of the C5Me4H ligand in the aryl complexes. The activation parameters of this rotation have been determined for [(C5Me4H)2Ti(p-C6H4CH3)2].  相似文献   

11.
Formation of Organosilicon Compounds. 99. Separation of Carbosilane and Silylphosphane Mixtures by Means of HPLC Test mixtures of Si-methylated carbosilanes were separated by means of reversedphase HPLC (nucleosil 5-C18; CH3OH:hexane = 90:10). The corresponding SiCl-containing mixtures were successfully separated only after reductin of the SiCl groups by means of LiAlH4 (CH3OH: C6H6 + H2O = 92.5:7.5 + 4—8%). A model separation of the silylphosphanes Me3SiPH2, (Me3Si)2PH and (Me3Si)3P using the same material but acetonitrile: toluene = 85:15 is also reported.  相似文献   

12.
Spectroscopie Investigations on R? C6H4O(CH3)2SiF Compounds The i.r. and Raman spectra of a number of R? C6H4O(CH3)2SiF compounds (R = H, CH3, CH3O, Cl, Br, NO2, NH2) have been recorded. The intramolecular and intermolecular interactions were discussed by means of ν SiF, ν Si? O? (C), ν C? O? (Si) and νs SiC2 vibrations.  相似文献   

13.
The polycarbosilanes (PCS) with meta-linkage bending unit ((SINGLE BOND)Me2Si(SINGLE BOND)m(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)) were successfully synthesized in mild conditions by hydrosilylation in the presence of [Pt{(CH2(DOUBLE BOND)CHSiMe2)2O}2]. The PCS obtained were soluble in various solvents owing to the lowering of the crystallinity. These properties are well compared with those of the PCS [(SINGLE BOND)Me2Si(SINGLE BOND)p(SINGLE BOND)C6H4(SINGLE BOND)Me2Si(SINGLE BOND)CH2CH2(SINGLE BOND)]n. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The structure and ring-chain tautomerism of 2-alkylthio-3,4,6,6-tetramethyl-4-hydroxy-3,4,5,6-tetrahydropyrimidine hydrohalides (Alk = CH3, C2H5, n-C3H7, n-C4H9, iso-C4H9, CH2C6H5 Hal = Cl, Br, I) were analyzed by means of UV, IR, and PMR spectroscopy. It is shown that the cations of the salts in the crystalline state and in solutions exist primarily in the cyclic form.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 695–698, May, 1982.  相似文献   

15.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

16.
The optical and biological properties of 2-(4-dimethylaminophenyl)benzothiazole cycloplatinated complexes featuring bioactive ligands ([{Pt(Me2N-pbt)(C6F5)}L] [L=Me2N-pbtH 1 , p-dpbH (4-(diphenylphosphino)benzoic acid) 2 , o-dpbH (2-(diphenylphosphino)benzoic acid) 3 ), [Pt(Me2N-pbt)(o-dpb)] 4 , [{Pt(Me2N-pbt)(C6F5)}2(μ-PRnP)] [PR4P=O(CH2CH2OC(O)C6H4PPh2)2 5 , PR12P=O{(CH2CH2O)3C(O)C6H4PPh2}2 6 ] are presented. Complexes 1 – 6 display 1ILCT and metal-perturbed 3ILCT dual emissions. The ratio between both bands is excitation dependent, accomplishing warm-white emissions for 2 , 5 and 6 . The phosphorescent emission is lost in aerated solutions owing to photoinduced electron transfer to 3O2 and the formation of 1O2, as confirmed in complexes 2 and 4 . They also exhibit photoinduced phosphorescence enhancement in non-degassed DMSO due to local oxidation of DMSO by sensitized 1O2, which causes a local degassing. Me2N-pbtH and the complexes specifically accumulate in the Golgi apparatus, although only 2 , 3 and 6 were active against A549 and HeLa cancer cell lines, 6 being highly selective in respect to nontumoral cells. The potential photodynamic property of these complexes was demonstrated with complex 4 .  相似文献   

17.
(E)- and (Z)-RCH=CHSiMe3(R=Ph, n-C6H13, CH3OCH2) reacted stereospecifically with Ph-Pd-OAc to give RCH=C(Ph)SiMe3 and R(Ph)C=CHSiMe3 with inversion of the starting geometry with respect to R and Me3Si groups.  相似文献   

18.
<正> 聚腈作为新的一类共轭高分子而引起注意。本文在前报的基础上进一步选择了一系列脂肪腈(乙腈、丙腈、戊腈、庚腈和苯乙腈),系统地研究它们在络合能力较强的付氏试剂(BF_3和TiCl_4等)作用下的聚合反应与机理,同时测定了各聚腈的物理性能。 1.腈的络合聚合 腈类与付氏试剂可形成定组成的络合物结晶:  相似文献   

19.
A new approach to the direct synthesis of ketones from alkanes or cycloalkanes (RH), CO, and silanes is proposed. Ketones were obtained in 50–97% yields from propane, butane, cyclopentane, cyclohexane, and methylcyclopentane on treatment with CO and silanes (Me4Si, Et4Si, orm- andp-XC6H4SiMe3, where X=Cl, Me, OMe) in the presence of CX4·2AlBr3 (X=Br, Cl) superacids at 0°C. The reactions withm- andp-XC6H4SiMe3 (X=Cl, Me) occur regioselectively to givem-ketones fromm-silanes andp-ketones fromp-silanes. However, the only product,p-MeOC6H4COR, is formed both fromm- andp-MeOC6H4SiMe3. The reaction ofcyclo-C5H9CO+ with BzSiMe3 results in an organosilicon ketone, Me3SiCH2C6H4COC5H9, while in the presence of an excess of an acylating system (after alcoholysis), Me2Si(OR′)CH2C6H4COR is formed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 947–952, May, 1998.  相似文献   

20.
The reaction of bis(trimethylsilyl)aminofluorsilanes, (Me3Si)2NSiF2R (R = CH3 or F), with sodium alcoholates or sodium phenylate yields under elimination of NaF alkoxy- and aryloxy-aminofluorosilanes of the composition (Me3Si)2NSiF(R)OR′(R′ = CH3, C2H5, C3H7, C6H5). A disiloxane is formed by thermal elimination of diethyl ether from bis(trimethylsilyl)aminomethylfluoroethoxysilane. The IR, mass, 1H and 19F NMR spectra of the above-mentioned compounds are reported. ab]Die Reaktion von Bis(trimethylsilyl)-aminofluorsilanen des Typs (Me3Si)2NSiF2R (R = F, CH3) mit Natriumalkoholaten und Natriumphenolat führt unter NaF-Abspaltung zu Alkyl- und Aryloxyaminofluorsilanen der Zusammensetzung: (Me3Si)2NSiF(R)OR′ (R′ = CH3, C2H7, C6H5, C6H5). Ein Disiloxan könnte durch die thermische Eliminierung von Diäthyläther aus Bis(trimethylsilyl)aminomethyl-fluor-äthoxy-silylarnin erhalten werden.Die IR-, Massen-, 1H- und 19F-NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号