首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

2.
Pyridoxine is analyzed using square wave voltammetry (SWV) at copper nanoparticles (nano‐Cu) modified poly‐crystalline gold electrode (nano‐Cu/Au). Nano‐Cu/Au is fabricated by a potential scan electrodeosition technique. Nano‐Cu/Au electrode has been characterized morphologically and electrochemically. The analysis of pyridoxine at nano‐Cu/Au electrode is achieved utilizing the quenching of copper voltammetric response due to the complexation with pyridoxine forming an electroinactive complex. Pyridoxine selectively forms complex with copper ions (modifier), but not with Au (underlying substrate) as supported by UV/Vis spectrophotometry. Using SWV the calibration curve for pyridoxine analysis was obtained in the concentration range of 0.3–2.7 µM with high correlation coefficient. The proposed method has been successfully applied for the determination of pyridoxine in two dosage forms.  相似文献   

3.
In this work, simultaneous determination of Cu(II), Pb(II) and Zn(II) ions at low concentration levels (ppb) by square wave anodic stripping voltammetry on a Bi(III) film electrode plated in situ at a glassy carbon electrode (GCE) is described. A chemometric approach was used to overcome the overlapping peaks of Cu(II) and Bi(III), the competition of the electrodeposited Cu and Bi for the surface of the GCE and the formation of Cu‐Zn intermetallic compounds. The construction of the multivariate calibration models, based on partial least squares regression, allowed the simultaneous determination of Cu (in the concentration range 8.0 to 20.1 ppb), Pb (2.0 to 30.0 ppb) and Zn (29.7 to 90.4 ppb) with most of the prediction errors obtained in the external validation set for the three models lower than 16, 11 and 26 %, respectively. Finally, this method was used for the determination of these trace metal ions in surface river water samples with satisfactory results [errors below 10, 5 and 32 % for Cu(II), Pb(II) and Zn(II), respectively].  相似文献   

4.
Applicability of square wave voltammetry for the determination of Cu(II) ions by PolyLut/GC and PolyKae/GC electrodes was evaluated in this study. For this luteolin and kaempferol were electrochemically polymerized on glassy carbon (GC) electrode surface in order to get polyluteolin and polykaempferol-modified glassy carbon electrodes (PolyLut/GC and PolyKae/GC, correspondingly). The formation of polyphenol layer on the GC electrode surface was evidenced by atomic force microscopy. Square wave voltammetry was found to be more sensitive in comparison with differential pulse voltammetry. It was determined that PolyLut/GC and PolyKae/GC electrodes offered great sensitivity towards Cu(II) ions with very low limit of detection, good reproducibility, sufficient stability and excellent selectivity of analytical signal.  相似文献   

5.
The new system which consists of the thiol derivative of dipyrromethene–Cu(II) complex created on the surface of a gold electrode was applied for the first time for oriented immobilization of selected His‐tagged domains of a receptor for advanced glycation endproducts (RAGE). Cyclic voltammetry (CV), Osteryoung square‐wave voltammetry (OSWV), electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) were used for characterization of the redox active sensing layer. The biosensor proposed was applied for determination of Aβ16–23′ peptide. In its presence, a decrease of the maximum Cu(II) redox current was observed. These values correlated linearly with the Aβ16–23′ concentration in the range 0.001–1.000 µM. The presence of diluted human plasma has no influence on the sensor responses.  相似文献   

6.
《Electroanalysis》2004,16(15):1227-1231
Recently reported studies on the transfer of silver ions across the aqueous|1,2‐dichloroethane interface using cyclic voltammetry (CV), facilitated by organic phase electrolyte anions, have been augmented by square‐wave voltammetry (SWV) and square‐wave stripping voltammetry (SWSV) studies and by consideration of the possible transfers of additional metal cations. Using SWV and SWSV, detection limits have been improved, from the 0.02 mM obtained by CV, to 1.4 μM (SWV) and 2 nM (SWSV). Additional studies show that mercury(I and II) ions, platinum(II) ions and gold(III) ions are also transferable across this interface, to differing extents. Of these three ions studied, highest sensitivity is achieved for the gold species.  相似文献   

7.
An electrochemical anodic adsorptive stripping procedure for ultra‐trace assay of 3‐hydroxyflavone (3HF) and Morin at a renewable pencil electrode (PGE) in bulk form and in biological fluids is described. The nature of the oxidation process of 3HF and Morin taking place at the PGE was characterized by cyclic voltammetry. The results show that the determination of the oxidation peak current is the basis of a simple, accurate and rapid method for quantification of 3HF by square‐wave anodic stripping voltammetry. Determination of Morin was achieved by square‐wave anodic adsorptive stripping voltammetry of the formed Morin? Cu(II) complex at a PGE. Factors influencing the trace measurements of 3HF and the Morin? Cu (II) complex at a PGE are assessed. The limits of detection and quantitation for the determination of 3HF and Morin in bulk form and in biological fluids were determined. The statistical analysis and the calibration curve data for trace determination of 3HF and Morin are reported.  相似文献   

8.
Determination of copper (Cu), zinc (Zn) and manganese (Mn) micronutrients in soil samples have been studied for an efficient fertiliser application. Plant-available micronutrients of soils were extracted with DTPA extraction procedure, then differential pulse stripping voltammetry (DPSV) and square wave stripping voltammetry (SWSV) methods were performed with inexpensive and disposable pencil graphite electrode for determination of Cu(II), Zn(II) and Mn(II). Parameters such as deposition potential, deposition time, pH and concentration of the supporting electrolyte were optimised for these ions. Under optimised conditions, the limits of detection were found as 0.01 mg L?1 for Cu(II) and 0.02 mg L?1 for Zn(II) and 0.25 mg L?1 for Mn(II). Relative standard deviation (%RSD) was 6.80, 8.86 and 3.29 for Cu(II), Zn(II) and Mn(II), respectively. The experimental study was conducted using a flame atomic absorption spectroscopy. The described stripping voltammetry methods were successfully applied for the determination of Mn(II), Cu(II) and Zn(II) in soil samples.  相似文献   

9.
《Electroanalysis》2017,29(4):1022-1030
The proposed chemically modified electrode was graphene oxide that was synthesized via Hummer's method followed by reduction of antimony film by in‐situ electrodeposition. The experimental process could be concluded in three main steps: preparation of antimony film, reduction of analyte ions on the electrode surface and stripping step under the conditions of square wave anodic stripping voltammetry (SWASV). A simple and rapid approach was developed for the determination of heavy metals simultaneously based on a sequential injection (SI), an automated flow‐based system, coupled with voltammetric method using antimony‐graphene oxide modified screen‐printed carbon electrode (SbF‐GO‐SPCE). The effects of main parameters involved with graphene oxide, antimony and measurement parameters were also investigated. Using SI‐SWASV under the optimal conditions, the proposed electrode platform has exhibited linear range from 0.1 to 1.5 M. Calculated limits of detection were 0.054, 0.026, 0.060, and 0.066 μM for Cd(II), Pb(II), Cu(II) and Hg(II), respectively. In addition, the optimized method has been successfully applied to determine heavy metals in real water samples with acceptable accuracy of 94.29 – 113.42 % recovery.  相似文献   

10.
A simple, rapid fabricated and sensitive modified electrode for detection of As(III) in alkaline media was proposed. The modified electrode was prepared by co‐electrodeposition of manganese oxides (MnOx) and gold nanoparticles (AuNPs) on the glassy carbon electrode (GCE) with cyclic voltammetry. Linear sweep anodic stripping voltammetry (LS‐ASV) was employed for the determination of arsenic (III) without interference from Cu(II), Hg(II), and other coexisting metal ions. A lower detection limit of 0.057 µg L?1 (S/N=3) were obtained with a accumulation time of 200 s. The proposed method was successfully applied to determine arsenic (III) in real water samples with satisfactory recoveries.  相似文献   

11.
A novel voltammetry with a modified gold electrode for the direct determination of copper in environmental samples, without any pretreatment, is proposed in this paper. A porous disorganized monolayer was formed on the surface of the gold electrode by the self-assembly of mercaptoacetic acid (MAA), which could selectively permeate small molecules. Subtractive square wave anodic stripping voltammetry (SASV) was applied to determine copper, in which the underpotential deposition (UPD) of copper was used as the deposition step. The linear range was from 8 x 10(-7) to 1 x l0(-5) mol l(-1) by the modified electrode in the presence of human serum albumin, and the determination was not interfered with common metal ions. Copper in a real environmental sample was successfully detected.  相似文献   

12.
A chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of Cu(II) and Cd(II) using square wave anodic stripping voltammetry. The electrode was prepared by incorporation of SiO2 nanoparticles, coated with a newly synthesized Schiff base, in carbon paste electrode. The limit of detection was found to be 0.28 ng mL?1 and 0.54 ng mL?1 for Cu(II) and Cd(II), respectively. The proposed chemically modified electrode was used for the determination of copper and cadmium in several foodstuffs and water samples.  相似文献   

13.
A penicillamine (PCA) self-assembled monolayer (SAM) was prepared on a gold electrode. It has been found that the modified electrode exhibited a selective response to copper ions. As demonstrated by cyclic voltammetric experiments, the SAM-based electrode showed an attractive ability to preconcentrate efficiently traces of copper(II) from solutions. Under optimum conditions, the anodic peak current was proportional to the concentration of Cu(II) in the range from 8.0 × 10−7 to 1.0 × 10−4 M with a detection limit of 4.0 × 10−7 M. Moreover, this modified gold electrode is also characterized by excellent repeatability, showing a relative standard deviation of 3.2% for nine successive measurements of 1.0 × 10−5 M Cu(II). The PCA/Au SAM gold electrode was used for the determination of Cu(II) in a tap water sample and the results showed a good agreement with the data obtained by atomic emission spectrometry. The text was submitted by the authors in English.  相似文献   

14.
The electrochemical determination of aqueous Hg(II) by anodic stripping voltammetry (ASV) at a solid gold electrode is described. The aim of this work is to optimise all factors that can influence this determination. Potential wave forms (linear sweep, differential pulse, square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedures were examined for their effect on the mercury peak shape and intensity. Five supporting electrolytes were tested. The best responses were obtained with square wave potential wave form and diluted HCl as supporting electrolyte. Electrochemical and mechanical surface cleaning, aimed at removing the amount of mercury deposited onto the gold surface, were necessary for obtaining a good performance of the electrode. Response linearity, repeatability, accuracy and detection limit were also evaluated.  相似文献   

15.
The aim of this work is the development of a procedure for the determination of aqueous Hg(II) by anodic stripping voltammetry at a gold nanoparticle‐modified glassy carbon electrode (AuNPs‐GCE). The signal of aqueous Hg(II) was measured in the square wave mode; the effect of potential scan parameters, deposition potential and deposition time on the analytical signal was examined. The supporting electrolyte was 0.06 M HCl. The repeatability, the linearity, the accuracy, the detection limit of the procedure and the interferences of other cations and of anions were evaluated. The performance of the AuNPs‐GCE was compared with those of a solid (SGE) and a film (FGE) gold electrode: the AuNPs‐GCE showed to provide lower detection limits and higher repeatability. The renewable surface permits to eliminate memory effects, to maintain a stable baseline and response, and to avoid frequent mechanical cleaning steps. The applicability of the AuNPs‐GCE for Hg(II) determination in drinking waters, sediments and pharmaceuticals was demonstrated.  相似文献   

16.
2,5-Dimercapto-1,3,4-thiadiazol (DMTD) can bind on the surface of a gold electrode through the strong gold-sulfur interaction. The fabrication and electrochemical characteristics of the DMTD self-assembled monolayer (SAM)-modified gold electrode were investigated. The DMTD SAM electrode exhibited a significantly increased sensitivity. Cu(II) was accumulated in phosphate buffer (pH 4.6) at a potential of -0.6 V (vs. Ag/AgCl) for 40 s and then determined by anodic stripping voltammetry (ASV) in copper-free phosphate buffer (pH 5.0). The effects of various parameters, such as the pH values of the preconcentration solution and measurement solution, the accumulation potential, and the accumulation time, were investigated. Under the optimum conditions, a linear calibration graph was obtained in the concentration range of 8.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) with a correlation coefficient of 0.9978. The relative standard deviations for eight successive determinations were 4.3 and 2.9% for 1.0 x 10(-5) and 2.0 x 10(-5) mol l(-1) Cu(II), respectively. The detection limit (three times signal to noise) was 4.0 x 10(-7) mol l(-1). The proposed voltammetric method was utilized successfully to detect the concentration of Cu(II) ions in tap water samples.  相似文献   

17.
In the present study, an alternative platform for trace copper ions (Cu(II)) determination using a diamond electrode in combination with a disposable paper-based analytical device (d-PAD) has been proposed. First, the complexation between Cu(II) and 1,10-phenanthroline ligand was adsorptively accumulated onto a paper that is directly in contact with the diamond electrode and measured via square wave anodic stripping voltammetry. Under the optimal experimental conditions, the peak current was proportional to the concentration of Cu(II) in the range of 0.4–70 ng mL−1, and the detection limit was found to be 0.1 ng mL−1. Most importantly, this platform can be successfully applied to detect trace Cu(II) in different water samples (drinking water, tap water, groundwater and river water) with satisfactory results. Thus, the proposed d-PAD could be a highly efficient platform for trace Cu(II) determination in environmental samples.  相似文献   

18.
4-Aminothiophenol (4-ATP) self-assembled monolayer (SAM) was immobilized on gold electrode. The multi-layered protein film electrode was prepared to rinse the 4-ATP-Au electrode in poly-styrenesulfonate (PSS) and poly-dimerthyldiallylammonium chloride (PDDA) successively, then soaked in a solution containing photosynthetic reaction center (RC) protein from Rhodobacter sphaeriodes or its pigment-replaced mutant. Thus, RC was found embedded in an ordered-orientation film. In cyclic voltammetry (CV) and square wave voltammetry (SWV), Au electrode gave a series of electrochemical signals due to the redox reaction of RC protein or its mutants. Intermolecular direct electron transfer (ET) was studied in this work.  相似文献   

19.
Neto MM  Rocha MM  Brett CM 《Talanta》1994,41(9):1597-1601
An adsorptive stripping voltammetry method for the determination of traces of molybdenum(VI) in flowing solution at a wall-jet electrode sensor has been developed. After adsorption of a molybdenum complex on a wall-jet mercury film electrode, the complex is reduced by a square wave scan. More satisfactory results were obtained using 8-hydroxyquinoline as a complexing agent in nitrate medium than using Toluidine Blue in oxalic acid. Enhanced sensitivity was achieved by optimizing adsorption time and square wave parameter values. The detection limit of Mo(VI) was found to be at the nanomolar level. Interference of some other metallic species in the determination of nanomolar Mo(VI) was also investigated: Cu(II), Zn(II), Mn(II) do not interfere at 10 muM, whereas 1 muM FeEDTA(-) causes an increase in peak current. This iron interference was removed effectively with citric acid.  相似文献   

20.
Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes   总被引:1,自引:0,他引:1  
Filipe OM  Brett CM 《Talanta》2003,61(5):643-650
A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Ω. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO2 nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO2 nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号