共查询到20条相似文献,搜索用时 12 毫秒
1.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier. 相似文献
2.
In this work, a glassy carbon electrode (GCE) was modified with multiwall carbon nanotubes/ionic liquid/graphene quantum dots (MWCNTs/IL/GQDs) nanocomposite. Then, the nanocomposite was decorated with nickel‐cobalt nanoparticles (Ni?Co NPs), and it was used as a non‐enzymatic glucose sensor. Field emission scanning electron microscopy, X‐ray diffraction spectroscopy, and energy dispersive spectroscopy were employed to prove the electrodeposition of the Ni?Co NPs on the surface of MWCNTs/IL/GQDs/GCE. Also, cyclic voltammetric and amperometric methods were utilized for the investigation of the electrochemical behaviour of the Ni?Co NPs/MWCNTs/IL/GQDs/GCE for glucose oxidation. The novel amperometric sensor displayed two linear ranges from 1.0 to 190.0 μmol L?1 and 190.0 to 4910 μmol L?1 with a low detection limit of 0.3 μmol L?1 as well as fast response time (2 s) and high stability. Also, the sensor showed good selectivity for glucose determination in the presence of ascorbic acid, citric acid, dopamine, uric acid, fructose, and sucrose, as potential interference species. Finally, the performance of the proposed sensor was investigated for the glucose determination in real samples. Ni?Co NPs/MWCNTs/IL/GQDs/GCE showed good sensitivity and excellent selectivity. 相似文献
3.
One‐Pot Three‐Component Synthesis of Hantzsch 1,4‐Dihydropyridines Promoted by Dimethyl Phosphate Ionic Liquids 下载免费PDF全文
A one‐pot three‐component reaction of ethyl acetoacetate, AcONH4, and different aldehydes has been successfully performed in the presence of ionic liquids (ILs) possessing a (MeO)2PO$\rm{{_{2}^{-}}}$ counterion. The impact of electronic and steric effects of the substituents of aromatic aldehydes, as well as the influence of different anions of ILs on the product yield, have been investigated. The application of dimethyl phosphate ILs in the synthesis of Hantzsch 1,4‐dihydropyridines presents a simple method for obtaining structurally diverse products in moderate to high yields without using any additional catalyst. 相似文献
4.
5.
Choline chloride–based ionic liquid Ethaline were employed as the supporting electrolyte, graphene (GE) nanosheet was prepared with ultrasonic wave assisted electrodeposition for the first time. Scanning electron microscope results indicated that flower‐like GE nanosheets were obtained at the electrode surface. Energy dispersive X–ray spectroscopy, Fourier transform infrared spectra and Raman spectra were used to characterize the composition of the flower‐like GE nanosheets. Electrochemical methods showed that the flower‐like GE nanosheets based sensor exhibited high electrocatalytic activity for ascorbic acid (AA) oxidation and can be potentially used for the sensitive amperometric sensing of AA. Amperometric experiments showed that the sensor displayed broad linearity from 0.25 μM to 2.0 mM with a relative low detection limit of 0.1 μM (S/N = 3). 相似文献
6.
本文采用一种简单、低耗的方法成功制备了氧化石墨烯(GNO)-自掺杂聚苯胺(SPAN)纳米复合材料,并通过扫描电子显微镜和差分脉冲伏安技术对该纳米复合材料的形貌及电化学性质进行了表征。GNO片层与交联的SPAN之间强烈的π-π*堆积作用和静电排斥作用,使复合材料形成一种独特的三维交联的纳米墙结构,这极大地提高了该复合材料的导电性、稳定性和电化学催化活性,可实现对氯霉素(CAP)的高灵敏检测。在0.1~100μmol/L的浓度范围,CAP的还原峰电流与其浓度具有良好的线性关系,检测限达到9.4×10-8 mol/L。此外,该方法具有优异的选择性和良好的回收率,可以用于实际样品中CAP的检测。 相似文献
7.
Highly Efficient Nitric Oxide Capture by Azole‐Based Ionic Liquids through Multiple‐Site Absorption 下载免费PDF全文
Dr. Kaihong Chen Dr. Guiling Shi Xiuyuan Zhou Prof. Dr. Haoran Li Prof. Dr. Congmin Wang 《Angewandte Chemie (International ed. in English)》2016,55(46):14364-14368
A novel method for highly efficient nitric oxide absorption by azole‐based ionic liquid was reported. The NO absorption capacity reached up to 4.52 mol per mol ionic liquid and is significant higher than the capacity other traditional absorbents. Moreover, the absorption of NO by this ionic liquid was reversible. Through a combination of experimental absorption, quantum chemical calculation, NMR and FT‐IR spectroscopic investigation, the results indicated that such high capacity originated from multiple‐site interactions between NO and the anion through the formation of NONOate with the chemical formula R1R2N?(NO?)?N=O, where R1 and R2 are alkyl groups. We believe that this highly efficient and reversible NO absorption by an azole‐based ionic liquid paves a new way for gas capture and utilization. 相似文献
8.
《Analytical letters》2012,45(9):1394-1403
A novel amplification system for electrochemiluminescence (ECL) was developed by combining graphene oxide (GO) and Se nanoparticles, in which the chitosan (CHIT) was used as improver. Based on a series of experiments, the influencing factors and mechanism for ECL emission were determined. Under optimal conditions, the GO/Se nanocomposite produced an intense ECL emission and maintained long-term ECL stability. Significantly, the electrode modified with GO/Se nanocomposite was used to detect the biomolecule dopamine (DA), and showed a linear range from 0.1 to 100 µM, with a detection limit of 0.025 µM. 相似文献
9.
10.
《Electroanalysis》2017,29(4):1038-1048
Novel insights into the strategy of highly precise, carbon‐based electrochemical sensors are presented by exploring the excellent properties of graphene oxide (GO) and multiwalled carbon nanotube composites (GO‐MWCNTs/CPE) for the sensitive determination of tramadol hydrochloride (TRH). Cyclic voltammetry, differential pulse voltammetry, chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) scanning electron microscopy, and X‐ray diffraction (XRD) techniques were used to characterize the properties of the sensor. The linear response obtained for TRH using the GO‐MWCNTs/CPE was found to be over the range of 2.0x10−9 to 1.1x10−3 M with a good linearity and high correlation (0.9996). The limits of detection and quantification were found to be 1.50x10−10 M and 4.99 x 10−10 M, respectively. The proposed sensor was applied for determination of TRH in the presence of presence of co‐formulated drugs ketorolac tromethamine (KTM) and paracetamol (PAR). The sensor was shown to successfully apply to the determination of TRH in plasma as real samples. Satisfactory recoveries of TRH from samples clearly revealed that the proposed sensor can be applied into clinical analysis, quality control and a routine determination of drugs in pharmaceutical formulations. 相似文献
11.
Glassy carbon (GC) electrode modified with a self‐assembled monolayer (SAM) of 1,8,15,22‐tetraaminophthalocyanatocobalt(II) (4α‐CoIITAPc) was used for the selective and highly sensitive determination of nitric oxide (NO). The SAM of 4α‐CoIITAPc was formed on GC electrode by spontaneous adsorption from DMF containing 1 mM 4α‐CoIITAPc. The SAM showed two pairs of well‐defined redox peaks corresponding to CoIII/CoII and CoIIIPc?1/CoIIIPc?2 in 0.2 M phosphate buffer (PB) solution (pH 2.5). The SAM modified electrode showed excellent electrocatalytic activity towards the oxidation of nitric oxide (NO) by enhancing its oxidation current with 310 mV less positive potential shift when compared to bare GC electrode. In amperometric measurements, the current response for NO oxidation was linearly increased in the concentration range of 3×10?9 to 30×10?9 M with a detection limit of 1.4×10?10 M (S/N=3). The proposed method showed a better recovery for NO in human blood serum samples. 相似文献
12.
Hong‐gang Liao Hong Wu Jun Wang Jun Liu Yan‐Xia Jiang Shi‐Gang Sun Yuehe Lin 《Electroanalysis》2010,22(19):2297-2302
This paper describes the direct electrochemistry and electrocatalysis of myoglobin immobilized on graphene‐cetylramethylammonium bromide (CTAB)‐ionic liquid nanocomposite film on a glassy carbon electrode. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and electrochemistry. It was found that the high surface area of graphene was helpful for immobilizing more proteins and the nanocomposite film could provide a favorable microenvironment for MB to retain its native structure and activity and to achieve reversible direct electron transfer reaction at an electrode. The ionic liquid may play dual roles here: it keeps the protein's activity and improves stability of the nanocomposite film; it also serves as a binder between protein and electrode, therefore, enhancing the electron transfer between the protein and the electrode. The nanocomposite films also exhibit good stability and catalytic activities for the electrocatalytic reduction of H2O2. 相似文献
13.
Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode 下载免费PDF全文
Determination of levodopa and tyrosine as two important species for treatment of Parkinson's disease is described. A novel electrochemical sensor involving graphene oxide/ZnO nanorods (GR/ZnO) nano composite and the graphite screen‐printed electrodes (GSPE) was developed for the simultaneous detection of levodopa and tyrosine. The screen‐printed electrodes with several advantages, including low cost, versatility and miniaturization were employed. On the other hand, the graphene oxide/ZnO nanorods nano composite was casted on the surface of GSPE to obtain GR/ZnO/SPE. The proposed nano sensor has excellent performance such as high sensitivity, good selectivity and analytical application in real samples. The combination of graphene oxide/ZnO nanorods nano composite with the screen‐printed electrode is favorable for amplifying electrochemical signals. Under optimized conditions square wave voltammetry (SWV) exhibited linear dynamic ranges from 1.0×10?6 to 1.0×10?3 M and 1.0×10?6 to 8.0×10?4 M with detection limits of 4.5×10?7 M and 3.4×10?7 M for levodopa and tyrosine respectively. 相似文献
14.
Chengxiang Ruan Tongtong Li Xiuzheng Wang Xiaowei Qi Jin Lou Weimin Gao Wei Sun 《中国化学会会志》2012,59(12):1584-1590
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results 相似文献
15.
Two‐dimensional (2D) layered nanomaterials, e.g. graphene and molybdenum disulfide (MoS2), have rapidly emerged in material sciences due to their unique physical, chemical and mechanical properties. In the meanwhile, there is a growing interest in constructing electrochemical sensors for a wide range of chemical and biological molecules by using these 2D nanomaterials. In this review, we summarize recent advances on using graphene and MoS2 for the development of electrochemical sensors for small molecules, proteins, nucleic acids and cells detection. We also provide our perspectives in this rapidly developing field. 相似文献
16.
17.
18.
The graphene nanosheets/manganese oxide nanoparticles modified glassy carbon electrode (GC/GNSs/MnOx) was simply prepared by casting a thin film of GNSs on the GC electrode surface, followed by performing electrodeposition of MnOx at applied constant potential. The GC/GNSs/MnOx modified electrode shows high catalytic activity toward oxidation of L ‐cysteine. Hydrodynamic amperometry determination of L ‐cysteine gave linear responses over a concentration range up to 120 µM with a detection limit of 75 nM and sensitivity of 27 nA µM?1. The GC/GNSs/MnOx electrode appears to be a highly efficient platform for the development of sensitive, stable and reproducible L ‐cysteine electrochemical sensors. 相似文献
19.
Electrochemical Measurement of Gold Oxide Reduction and Methods for Acid Neutralization and Minimization of Water in Wet Ionic Liquid 下载免费PDF全文
The formation and reduction of gold oxide in wet ionic liquid (IL), N‐trimethyl‐N‐butylammonium bis(trifluoromethanesulfonyl)imide, ([Me3NnBu][TFSI]) is examined. The water concentration is determined using both the charge and peak current from the reduction of gold oxide and compared directly with Karl Fischer data. The quantitative determination of water in the IL is demonstrated for concentrations between 0.09 and 0.74 by weight (w%). The treatment of wet IL with dry nitrogen or molecular sieves reduces the water below background levels. Finally, methods for acid neutralization and the reduction of water with molecular sieves are conducted to minimize their impact on subsequent electrochemical measurements. 相似文献