首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions between [M(NO){HB(3,5-Me2C3HN2)3}X2] (M = Mo, X = Cl, Br, I; M = W, X = Cl) and the monosaccharides 2,3:4,5-di-O-iso-propylidene-β- -fructopyranose, 2,3:5,6-di-O-isopropylidene-- -mannofuranose, methyl-- -glucopyranoside and -(+)-mannofuranose have been investigated and the complexes [M(NO){HB(3,5- Me2C3HN2)3}X(OR)] (M = Mo, X = Cl, Br, I; M = W, X = Cl; ROH = 2,3:4,5-di-O- isopropylidene-β- -fructopyranose) have been isolated as mixtures of diastereoisomers.  相似文献   

2.
Product and kinetic studies on the reactions of hydrogen chloride in methanol solution with the substrates (CH3)3SnM(CH3)3 (M = Sn; Ge and Si) show that both SnM and SnCH3 cleavage reactions occur, at similar rates, and are followed by other reactions giving complex but explicable mixtures of products. Similar behaviour is observed for trifluoroacetolysis in carbon tetrachloride solution, and some intermediates are observable. Trifluoroacetolysis of (CH3)3SnC(CH3)3 results in exclusive SnCH3 cleavage. The very slow apparent solvolysis in acetic acid solution is thought to involve reaction with dissolved oxygen.  相似文献   

3.
The reactions of the substituted Group VI metal carbonyls of the type M(CO)4(2-Mepy)2 (M = Mo, w) and M(CO)3(L)3 (L = py, M = Mo, W; L = NH3, M = Mo) with mercuric derivatives HgX2 (X = Cl, CN, SCN) have given rise to three series of tricarbonyl complexes: M(CO)3(py)HgCl2 · 1/2HgCl2 (M = Mo, W); 2[M(CO)3(L)]Hg(CN)·nHg(CN)x (L = py, M = Mo, W, n = 12, × = 2; L = 2- Mepy, × = 1; M = Mo, n = 3; M = W, n = 1); and [M(CO)3(L)Hg(SCN)2 · nHg(SCN)2] (L = py, M = Mo,W, n = 0; L = 2-Mepy, M = Mo, W, n = 12; L = NH3, M = Mo, n = 0) depending on which mercuric compound is employed. All the reactions with Hg(SCN)2 give isolable products whereas those with Hg(CN)2 and HgCl2 did so far only the reactions with [M(CO)4(2-Mepy)2] and M(CO)3(py)3. The greater reactivity of Hg(SCN)2 than of Hg(CN)2 and HgCl2 is consistent with the various acceptor capacities of the groups bonded to the mercury atom.The reactions studied always involve displacement of the N-donor ligand of the original complex and partial or total displacement of the halide or pseudohalide groups of the mercury compound to give in all cases compounds containing MHg bonds. In addition, elimination of a CO group in the tetracarbonyl complexes M(CO)4(2-Mepy)2occurs.  相似文献   

4.
The average molecular structures of X-CF3, molecules (X = Cl, Br, I) have been determined by combined use of electron diffraction and microwave data. Including results for X = H and X = F a strict correlation between C-F bond length and the electronegativity of the X atom is observed. This correlation can be nicely understood in terms of the electron distribution calculated in the CNDO/2 approximation. It is also observed that the change in the C-X bond length with substitution of the CF3-group by a CH3-group is strictly correlated with the electronegativity of the X atom.  相似文献   

5.
Various preparative routes for the synthesis of (CH3)3SiP(CF3)2 are discussed. The most favourable method, reaction of (CH3)3MPH2 with HE(CF3)2, provides a good yield of (CH3)3ME(CF3)2 compounds (M = Si, Ge, Sn; E = P, As). The reaction rate is dependent on M (Si < Ge <Sn) und E (P < As). The stability and reactivity of the (CH3)3ME(CF3)2 compounds are discussed. The new compounds were characterized by NMR and IR spectra and by cleavage reactions of the M-E bond. 1H, 19F NMR and IR spectral data are reported.  相似文献   

6.
The infrared and Raman vibrational spectra of X3MCo(CO)4 compounds (M = C, Ge and X = H, D, F), including depolarization measurements, are presented, and complete vibrational assignments are made.  相似文献   

7.
Polarized single-crystal absorption spectra of CsVCl3, CsVBr3 and CsVI3 have been measured between 5000 and 30000 cm?1 at temperatures ranging from 6 to 273 K. Spin-allowed transitions arise through a vibronic single-ion mechanism. Spin-forbidden transitions are strongly enhanced through an exchange intensity mechanism.  相似文献   

8.
Dipole moment and electric birefringence studies are reported for the series of molecules C6H5SM(CH3)3 in cyclohexane solution; M = C, Si, Ge or Sn. The experimental data are analysed to determine the preferred solution-state conformations. The dihedral angles between the C6H5 and CarSM planes are, in turn, 82 ± 11°, 80 ± 11°, 66 ± 12° and 46 ± 10°.  相似文献   

9.
The magnetism of the three compounds Pr3X[SiS4]2 (X=Cl, Br, I) has been measured in the temperature range between 1.7 and 300 K. For the theoretical calculations to interpret the magnetic behavior the angular overlap model was employed to reproduce the ligand field influence and the molecular field approach to take magnetic interaction into account.  相似文献   

10.
Preparation of Germanium-Manganese-, Germanium-Rhenium- and Tin-Rhenium-Clusters of the Type M2(CO)8[μ-EXM(CO)5]2 (M = Mn, E = Ge, X = Br, I; M = Re, E = Ge or Sn, X = I or Cl, Br, I) The clusters Re2(CO)8[μ-SnXRe(CO)5]2 are prepared by reaction of Re2(CO)10 and SnX2 in a Schlenk-tube under release of pressure (X = Cl, Br, I) or in a sealed glass tube (X = Br, I). As central structural unit a four-membered Re2Sn2 ring has to be assumed. This unit can be opened again by reaction with CO under pressure. X2Sn[Re(CO)5]2, which is also formed during the preparation of the clusters in dependance of the CO-pressure, indicates insertion of SnX2 into the Re—Re bond to be the primary step. The corresponding clusters M2(CO)8[μ-GeXM(CO)5]2 (M = Mn, X = Br, I; M = Re, X = I) are prepared by reaction of GeI2 and M2(CO)10 or of I2Ge[Mn(CO)5]2 and Mn2(CO)10 or of Br3GeMn(CO)5 and BrMn(CO)5. Ir frequencies of the new clusters are assigned.  相似文献   

11.
NQR spectra were observed for α-(CH3)2 TeX2 (X=Cl, Br, I) and (CH3)2 TeI4 at various temperatures. The two 81Br NQR lines were observed above 110 K in α-(CH3)2TeBr2. The characteristic temperature dependence of the 127I NQR line in α-(CH3)2 TeI. can be explained by the 3c—4e bond of the linear I---Te---I group. The positive temperatures dependence of the lowest 127I NQR line in (CH3)2TeI4 is discussed on the basis of the electron population calculated from Townes—Dailey treatment.  相似文献   

12.
The IR and Raman spectra of the compounds CdFe(CO)4 and HgFe(CO)4, are reported and assigned using C2v, local symmetry around the iron atom; vibrational analyses of the spectra have also been carried out. The spectroscopic data obtained indicate that the compounds are probably polymers with a centre of symmetry and an octahedral configuration about the iron atom in accordance with X-ray structural results.  相似文献   

13.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

14.
A set of phosphine complexes of the type W(CO)3(PX3)2(CH2CH2) (X=H, CH3, F, Cl, Br, and I) were investigated by density functional theory method (BP86) to examine the effect of the substituent X on the orientation of C-C vector of the ethylene ligand with respect to one of the metal-ligand bonds as well as the donation and the backdonation in the bonding ligands of phosphine and ethylene. When X=CH3, H, F, and Cl, the ethylene C-C vector prefers to be coplanar with metal-phosphine bonds, while for the ethylene complexes containing PBr3 and PI3 ligands, the structural preference is coplanarity of the ethylene and the metal-carbonyl bonds. The molecular orbital calculations and natural bond orbital analysis were used to examine the structural consequences derived from these complexes. It can be concluded that the structural preferences in the complexes have a clear relation to electronic effects of phosphine ligands. Our calculations for halide phosphine complexes, particularly for PBr3 and PI3, allow us to conclude that in addition to electronic effects, steric factors can also affect the orientation of the ethylene ligand in complexes.  相似文献   

15.
The negative-ion mass spectra at 70 eV of the compounds Os3(CO)12X2 and Os3(CO)10X2 (X =Br, I) are reported. Negative molecular ions are absent and only Os3-containing fragments due to the loss of carbonyl groups are observed. [M  CO]? is the base peak in the spectrum of Os3(CO)10I2 and has a very high abundance in that of Os3(CO)10Br2, whereas it is very weak in the spectra of Os3(CO)12X2, where [M  3 CO]? is the base peak. This change in the ionic intensities is related to the closed and open structure of the Os3 unit in Os3(CO)10X2 and Os3(CO)12X2 respectively.  相似文献   

16.
The IR and Raman spectra of gaseous and solid CH3TiX3 and CD3TiX3 species (X = Cl, Br, I) are reported. The gas phase spectra have been recorded between 4000 and 20 cm?1 at pressures of 1 atm and 4 atm at 350 K and the Raman spectra of the solid phase recorded at 4.2 K. Internal rotation barriers and thermodynamic functions have been calculated.  相似文献   

17.
Treatment of ruthenium complexes [CpRu(AN)3][PF6] (1a) (AN=acetonitrile) with iron complexes CpFe(CO)2X (2a–2c) (X=Cl, Br, I) and CpFe(CO)L′X (6a–6g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Cl, Br, I) in refluxing CH2Cl2 for 3 h results in a triple ligand transfer reaction from iron to ruthenium to give stable ruthenium complexes CpRu(CO)2X (3a–3c) (X=Cl, Br, I) and CpRu(CO)L′X (7a–7g) (L′=PMe3, PMe2Ph, PMePh2, PPh3, P(OPh)3; X=Br, I), respectively. Similar reaction of [CpRu(L)(AN)2][PF6] (1b: L=CO, 1c: P(OMe)3) causes double ligand transfer to yield complexes 3a–3c and 7a–7h. Halide on iron, CO on iron or ruthenium, and two acetonitrile ligands on ruthenium are essential for the present ligand transfer reaction. The dinuclear ruthenium complex 11a [CpRu(CO)(μ-I)]2 was isolated from the reaction of 1a with 6a at 0°C. Complex 11a slowly decomposes in CH2Cl2 at room temperature to give 3a, and transforms into 7a by the reaction with PMe3.  相似文献   

18.
Optimized geometries, HOMO–LUMO gaps, vertical ionization potentials and electron affinities are obtained using HF, and B3LYP methods with 6-311G** basis set for C20H20, Si20H20 and Ge20H20. For germanium and tin analogues, B3LYP calculations are performed with LANL2DZ effective core potential. Electron correlation is included by doing MP2 calculation. The harmonic frequencies of all the compounds are obtained using B3LYP with 6-311G** and/or LANL2DZ basis sets. The force field and vibrational spectra are analyzed and 74 symmetry unique non-redundant local force constants are evaluated. Probable assignments are proposed for all the fundamentals based on the potential energy distribution.  相似文献   

19.
The infrared, Raman and (1H, 13C) NMR spectra of trivinyltin chloride, bromide and iodide have been analyzed and discussed. The vibrational assignment has been confirmed by an approximate normal coordinate analysis. Evidence has been found for a marked influence of the X substituent on the tin-carbon bond due to isovalent rehybridization. Variations in the π electron system of the vinyl group are hardly significant.  相似文献   

20.
The conformational energies, rotational barrier heights and molecular structures in C(CH2X)4 molecules (X=F, Cl, Br) based on molecular-mechanics calculations have been obtained. The results from these calculations are compared with the experimental gas-phase results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号