首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A continuation method has been used with a finite element grid and a geometric perturbation to compute two successive symmetry breaking flow transitions with increasing Reynolds number in flow of generalized Newtonian fluids through a sudden planar expansion. With an expansion ratio of 16, the onset Reynolds number is particularly sensitive to small geometric asymmetry and the critical Reynolds numbers for the two successive flow transitions are found to be very close. These transitions are delayed to higher onset Reynolds numbers by increasing the degree of pseudoplasticity. This trend is observed experimentally as well in this work and may be attributed to the competing effects of shear thinning and inertia on the size of the corner vortex before the symmetry breaking flow transition. After the second transition with an expansion ratio of 16, the two large staggered vortices on opposite walls occupy most of the transverse dimension so that the core flow between the vortices appears as a thin jet oscillating along the flow direction. This is more pronounced for the pseudoplastic liquid. After the second transition, the degree of flow asymmetry at a given location downstream of the expansion plane is larger for the pseudoplastic liquid than for the Newtonian liquid at comparable Reynolds numbers. The last feature is also evident in the experimentally observed velocity profiles. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
A study is conducted to investigate forced convective flow and heat transfer over a bank of staggered cylinders. Using a novel numerical formulation based on a non‐orthogonal collocated grid in a physical plane, the effects of Reynolds number and cylinder spacing on the flow and heat transfer behaviour are systematically studied. It is observed that both the Reynolds number and cylinder spacing influence the recirculatory vortex formation and growth in the region between the cylinders; in turn, the rates of heat transfer between the fluid and the staggered cylinders are affected. As the cylinder spacing decreases, the size and length of eddies reduce. For sufficiently small spacings, eddy formation is completely suppressed even at high Reynolds number. Pressure drop and Nusselt number predictions based on numerical study are in excellent agreement with available correlations. The study provides useful insight on the detailed flow and heat transfer phenomena for the case of a bank of staggered cylinders. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Particle velocity and concentration statistics were measured in a vertically downward planar sudden expansion flow for large-eddy particle Stokes numbers (τpUo/5H) ranging from 0.5 to 7.4. Particles with Stokes numbers greater than 3 did not enter the recirculation zone, exhibited substantial attenuation of cross-stream velocity fluctuations, and had large streamwise velocity fluctuations in regions of strong velocity gradient. The smallest particles filled the recirculation zone and showed strong response to the large eddies in the flow. Phase-locked particle concentration measurements showed that these particles were centrifuged away from vortex cores and concentrated between vortices. Intermediate-size particles with Stokes numbers of 1.4 were injected intermittently into the recirculation zone as tongues of particles moving down between vortices. Particle Reynolds number was found to have negligible effect on the particle velocity statistics.  相似文献   

4.
Laminar fluid flow in rows of plate elements with staggered arrangement has been investigated by solving the complete Navier-Stokes equations using numerical methods. The results have been compared with those obtained on the basis of boundary-layer simplifications. The theoretical pressure-drop values compare well with available numerical and experimental data  相似文献   

5.
The flow of an electrically conducting incompressible viscous fluid in a plane channel with smooth expansion in the presence of a uniform transverse magnetic field has been analysed. A solution technique for the governing magnetohydrodynamic equations in primitive variable formulation has been developed. A co‐ordinate transformation has been employed to map the infinite irregular domain into a finite regular computational domain. The governing equations are discretized using finite‐difference approximations in staggered grid. Pressure Poisson equation and pressure correction formulae are derived and solved numerically. It is found that with increase in the magnetic field, the size of the flow separation zone diminishes and for sufficiently large magnetic field, the separation zone disappears completely. The peak u‐velocity decreases with increase in the magnetic field. It is also found that the asymmetric flow in a symmetric geometry, which occurs at moderate Reynolds numbers, becomes symmetric with sufficient increase in the transverse magnetic field. Thus, a transverse magnetic field of suitable strength has a stabilizing effect in controlling flow separation, as also in delaying the transition to turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The study investigates the entrance effect for flow over a backward-facing step by comparing predictions that set the inlet boundary at various locations upstream of the sudden expansion. Differences are most significant in the sudden expansion region. If the geometry has an inlet channel, then shorter reattachment and separation lengths are predicted. Comparisons with experimental data indicate that better agreement is found using a long inlet channel, but only for low Reynolds numbers where the experimental error is less significant. For certain cases, predictions with a high expansion number are perturbed by the entrance effect more than low-expansion-number predictions; however, the effect is localized in the sudden expansion region. Channels with low expansion numbers always experience a greater entrance effect after some distance upstream and downstream of the sudden expansion. The boundary layer growth in the inlet channel was examined using a uniform inlet velocity profile. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
A new finite difference methodology is developed for the solution of computational fluid dynamics problems that do not require the use of staggered grid systems. Previous successful and robust non‐staggered methods, which used primitive variables and mass conservation in order to solve the pressure field, either interpolate cell‐face velocities or interpolate the pressure gradients in a special way, usually with an upwind‐bias to avoid the problem of odd–even coupling between the velocity and pressure fields. The new methodology presented does not detail a ‘special interpolation procedure for a primitive variable’, however, it manages to avoid the problem of odd–even coupling. The odd–even coupling is avoided by applying fourth‐order dissipation to the pressure field. It is shown that this approach can be regarded as a modified Rhie and Chow scheme. The method is implemented using a SIMPLE‐type algorithm and is applied to two test problems: laminar flow over a backward‐facing step and laminar flow in a square cavity with a driven lid. Good agreement is obtained between the numerical solutions and the corresponding benchmark solutions. The pressure dissipation term was found to successfully suppress wiggles in the pressure field. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
平面突扩流动非稳定性的大涡模拟   总被引:7,自引:1,他引:7  
用TG有限元法求解二维大涡模拟的非定常N-S方程,数值模拟了平面突扩流动,计算结果展示了回流区内流动的多涡结构及其不稳定的周期振荡过程,而该振荡过程的周期时间历程平均,恰好与诸多湍流模型的计算结果及实验结果相吻合,证明了数值模拟的正确性。  相似文献   

10.
Two‐dimensional laminar incompressible impinging slot‐jet is simulated numerically to gain insight into flow characteristics.Computations are done for vertically downward‐directed slot‐jets impinging on a plate at the bottom and confined by a parallel surface on top. The behaviour of the jet with respect to aspect ratio (AR) and Reynolds number (Re) are described in detail. The computed flow patterns for various AR (2–5) and for a range of jet‐exit Reynolds numbers (100–500) are analysed to understand the flow characteristics. The transient development of the flow is also simulated for AR = 4 and Re = 300. It is found that the reattachment length is dependent on both AR and Reynolds number for the range considered. The correlation for reattachment length is suggested. The maximum resultant velocity Vrmax and its trajectory is reported. A detailed study of horizontal velocity profile at different downstream locations is reported. It is found that the effect of Reynolds number and AR is significant to the bottom wall vorticity in the impingement and wall jet regions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
MacCormack's explicit time-marching scheme is used to solve the full Navier–Stokes unsteady, compressible equations for internal flows. The requirement of a very fine grid to capture shock as well as separated flows is circumvented by employing grid clustering. The numerical scheme is applied for axisymmetric as well as two-dimensional flows. Numerical predictions are compared with experimental data and the qualitative as well as the quantitative agreement is found to be quite satisfactory. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.  相似文献   

14.
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.  相似文献   

15.
An improved scheme of the continuity vorticity pressure (CVP) variational equations method is presented. The changes from the original version of the CVP method concern the velocity and the pressure correction equations that are used in the solution procedure and the topology of the grid where the method is applied. The improved CVP scheme is faster, simpler and more stable than the original version of the method. The efficiency and the accuracy of the new scheme are tested and validated through comparison of predictions and of computational time, with numerical results obtained with the SIMPLE method. Moreover, we present extensive comparisons of the results of the improved CVP scheme with numerical and experimental data from various researchers that show excellent agreement for a wide range of benchmark 2D and 3D laminar internal flow problems such as flow over a backward facing step, flow in square, circular and elliptical curved ducts and pulsating flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method to solve the Reynolds‐averaged Navier–Stokes equations with the presence of discontinuities is outlined and discussed. The pressure is decomposed into the sum of a hydrostatic component and a hydrodynamic component. The numerical technique is based upon the classical staggered grids and semi‐implicit finite difference methods applied for quasi‐ and non‐hydrostatic flows. The advection terms in the momentum equations are approximated in order to conserve mass and momentum following the principles recently developed for the numerical simulation of shallow water flows with large gradients. Conservation of these properties is the most important aspect to represent near local discontinuities in the solution, following from sharp bottom gradients or hydraulic jumps. The model is applied to reproduce the flow over a step where a hydraulic jump forms downstream. The hydrostatic pressure assumption fails to represent this type of flow mainly because of the pressure deviation from the hydrostatic values downstream the step. Fairly accurate results are obtained from the numerical model compared with experimental data. Deviation from the data is found to be inherent to the standard k–ε model implemented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
For steady non-swirling axisymmetric flow () of an incompressible fluid two invariants of the rate of strain dyadic D are introduced, which directly enter into the expression for D. This being the case they - in conjunction with the vorticity - allow a flow classification into strong and weak flows. For a generalized Newtonian fluid an expression for the viscosity function is listed, which reduces for model fluids to correct results in shearing and, respectively, extensional flow. A possible modification of is proposed, which involves the relative vorticity as well (quasi-Newtonian fluid), since this allows to adjust itself to the local nature of the flow. As such it should prove useful for numerical calculation. Received April 23, 1998  相似文献   

18.
The effect of wavelength and relative velocity on the disturbed interface of two‐phase stratified regime is modeled and discussed. To analyze the stability, a small perturbation is imposed on the interface. Growth or decline of the disturbed wave, relative velocity, and surface tension with respect to time will be discussed numerically. Newly developed scheme applied to a two‐dimensional flow field and the governing Navier–Stokes equations in laminar regime are solved. Finite volume method together with non‐staggered curvilinear grid is a very effective approach to capture interface shape with time. Because of the interface shape, for any time advancement, a new grid is performed separately on each stratified field, liquid, and gas regime. The results are compared with the analytical characteristics method and one‐dimensional modeling. This comparison shows that solving the momentum equation including viscosity term leads to physically more realistic results. In addition, the newly developed method is capable of predicting two‐phase stratified flow behavior more precisely than one‐dimensional modeling. It was perceived that the surface tension has an inevitable role in dissipation of interface instability and convergence of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A control volume type numerical methodology for the analysis of steady three‐dimensional rotating flows with heat transfer, in both laminar and turbulent conditions, is implemented and experimentally tested. Non‐axisymmetric momentum and heat transfer phenomena are allowed for. Turbulent transport is alternatively represented through three existing versions of the kε model that were adjusted to take into account the turbulence anisotropy promoted by rotation, streamline curvature and thermal buoyancy. Their relative performance is evaluated by comparison of calculated local and global heat balances with those obtained through measurements in a laboratory device. A modified version of the Lam and Bremhorst, low Reynolds number model is seen to give the best results. A preliminary analysis focused on the flow structure and the transfer of heat is reported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of swirling intensity on the structure and heat transfer of a turbulent gas–droplet flow after a sudden pipe expansion has been numerically simulated. Air is used as the carrier phase, and water, ethanol, and acetone are used as the dispersed phase. The Eulerian approach is applied to simulate the dynamics and heat transfer in the dispersed phase. The gas phase is described by a system of Reynolds-averaged Navier-Stokes (RANS) equations, taking into account the effect of droplets on mean transport and turbulent characteristics in the carrier phase. Gas phase turbulence is predicted using the second-moment closure. A swirling droplet-laden flow is characterized by an increase in the number of small particles on the pipe axis due to their accumulation in the zone of flow recirculation and the action of the turbulent migration (turbophoresis) force. A rapid dispersion of fine droplets over the pipe cross-section is observed without swirling. With an increase in swirling intensity, a significant reduction in the length of the separation region occurs. The swirling of a two-phase flow with liquid droplets leads to an increase in the level of turbulence for all three types of liquid droplets investigated in this work due to their intensive evaporation. It is shown that the addition of droplets leads to a significant increase in heat transfer in comparison with a single-phase swirling flow. The greatest effect of flow swirling on heat transfer intensification in a two-phase gas-droplet flow is obtained for the droplets of ethanol and water and smallest effect is for the acetone droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号