首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In recent years β‐amino acids have increased their importance enormously in defining secondary structures of β‐peptides. Interest in β‐amino acids raises the question: Why and how did nature choose α‐amino acids for the central role in life? In this article we present experimental results of MS and 31P NMR methods on the chemical behavior of N‐phosphorylated α‐alanine, β‐alanine, and γ‐amino butyric acid in different solvents. N‐Phosphoryl α‐alanine can self‐assemble to N‐phosphopeptides either in water or in organic solvents, while no assembly was observed for β‐ or γ‐amino acids. An intramolecular carboxylic–phosphoric mixed anhydride (IMCPA) is the key structure responsible for their chemical behaviors. Relative energies and solvent effects of three isomers of IMCPA derived from α‐alanine (2a–c), with five‐membered ring, and five isomers of IMCPA derived from β‐alanine (4a–e), with six‐membered ring, were calculated with density functional theory at the B3LYP/6‐31G** level. The lower relative energy (3.2 kcal/mol in water) of 2b and lower energy barrier for its formation (16.7 kcal/mol in water) are responsible for the peptide formation from N‐phosphoryl α‐alanine. Both experimental and theoretical studies indicate that the structural difference among α‐, β‐, and γ‐amino acids can be recognized by formation of IMCPA after N‐phosphorylation. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 232–241, 2003  相似文献   

2.
We have used model tripeptides GXW (with X being one of the amino acid residues glycine (G), alanine (A), leucine (L), phenylalanine (F), glutamic acid (E), histidine (H), lysine (K), or arginine (R)) to study the effects of the basicity of the amino acid residue on the radical migrations and dissociations of odd‐electron molecular peptide radical cations M.+ in the gas phase. Low‐energy collision‐induced dissociation (CID) experiments revealed that the interconvertibility of the isomers [G.XW]+ (radical centered on the N‐terminal α‐carbon atom) and [GXW].+ (radical centered on the π system of the indolyl ring) generally increased upon increasing the proton affinity of residue X. When X was arginine, the most basic amino acid, the two isomers were fully interconvertible and produced almost identical CID spectra despite the different locations of their initial radical sites. The presence of the very basic arginine residue allowed radical migrations to proceed readily among the [G.RW]+ and [GRW].+ isomers prior to their dissociations. Density functional theory calculations revealed that the energy barriers for isomerizations among the α‐carbon‐centered radical [G.RW]+, the π‐centered radical [GRW].+, and the β‐carbon‐centered radical [GRWβ.]+ (ca. 32–36 kcal mol−1) were comparable with those for their dissociations (ca. 32–34 kcal mol−1). The arginine residue in these GRW radical cations tightly sequesters the proton, thereby resulting in minimal changes in the chemical environment during the radical migrations, in contrast to the situation for the analogous GGW system, in which the proton is inefficiently stabilized during the course of radical migration.  相似文献   

3.
Chiral discrimination of seven enantiomeric pairs of β‐3‐homo‐amino acids was studied by using the kinetic method and trimeric metal‐bound complexes, with natural and unnatural α‐amino acids as chiral reference compounds and divalent metal ions (Cu2+ and Ni2+) as the center ions. The β‐3‐homo‐amino acids were selected for this study because, first of all, chiral discrimination of β‐amino acids has not been extensively studied by mass spectrometry. Moreover, these β‐3‐homo‐amino acids studied have different aromatic side chains. Thus, the emphasis was to study the effect of the side chain (electron density of the phenyl ring, as well as the difference between phenyl and benzyl side chains) for the chiral discrimination. The results showed that by the proper choice of a metal ion and a chiral reference compound, all seven enantiomeric pairs of β‐3‐homo‐amino acids could be differentiated. Moreover, it was noted that the β‐3‐homo‐amino acids with benzyl side chains provided higher enantioselectivity than the corresponding phenyl ones. However, increasing or decreasing the electron density of the aromatic ring by different substituents in both the phenyl and benzyl side chains had practically no role for chiral discrimination of β‐3‐homo‐amino acids studied. When copper was used as the central metal, the phenyl side chain containing reference molecules (S)‐2‐amino‐2‐phenylacetic acid (L ‐Phg) and (S)‐2‐amino‐2‐(4‐hydroxyphenyl)‐acetic acid (L ‐4′‐OHPhg) gave rise to an additional copper‐reduced dimeric fragment ion, [CuI(ref)(A)]+. The inclusion of this ion improved noticeably the enantioselectivity values obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We report on the characteristics of the radical‐ion‐driven dissociation of a diverse array of β‐amino acids incorporated into α‐peptides, as probed by tandem electron‐capture and electron‐transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β‐amino acids than for their α‐form counterparts. In particular, only aromatic (e.g., β‐Phe), and to a substantially lower extent, carbonyl‐containing (e.g., β‐Glu and β‐Gln) amino acid side chains, lead to N? Cβ bond cleavage in the corresponding β‐amino acids. We conclude that radical stabilization must be provided by the side chain to enable the radical‐driven fragmentation from the nearby backbone carbonyl carbon to proceed. In contrast with the cleavage of backbones derived from α‐amino acids, ECD of peptides composed mainly of β‐amino acids reveals a shift in cleavage priority from the N? Cβ to the Cα? C bond. The incorporation of CH2 groups into the peptide backbone may thus drastically influence the backbone charge solvation preference. The characteristics of radical‐driven β‐amino acid dissociation described herein are of particular importance to methods development, applications in peptide sequencing, and peptide and protein modification (e.g., deamidation and isomerization) analysis in life science research.  相似文献   

5.
An improved and practical procedure for the stereoselective synthesis of anti‐β‐hydroxy‐α‐amino acids (anti‐βhAAs), by palladium‐catalyzed sequential C(sp3)?H functionalization directed by 8‐aminoquinoline auxiliary, is described. followed by a previously established monoarylation and/or alkylation of the β‐methyl C(sp3)?H of alanine derivative, β‐acetoxylation of both alkylic and benzylic methylene C(sp3)?H bonds affords various anti‐β‐hydroxy‐α‐amino acid derivatives. As an example, the synthesis of β‐mercapto‐α‐amino acids, which are highly important to the extension of native chemical ligation chemistry beyond cysteine, is described. The synthetic potential of this protocol is further demonstrated by the synthesis of diverse β‐branched α‐amino acids. The observed diastereoselectivities are strongly influenced by electronic effects of aromatic AAs and steric effects of the linear side‐chain AAs, which could be explained by the competition of intramolecular C?OAc bond reductive elimination from PdIV intermediates vs. intermolecular attack by an external nucleophile (AcO?) in an SN2‐type process.  相似文献   

6.
We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α‐amino acid attached to a quaternary glyco‐β‐amino acid. In particular, we combined a S‐glycosylated β2,2‐amino acid and two different types of α‐amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β‐dipeptides. The key step in the synthesis involved the ring‐opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur‐containing nucleophile by using 1‐thio‐β‐D ‐glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time‐averaged restraints (MD‐tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β‐amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α‐amino acids due to the presence of CH–π interactions between the phenyl or indole ring and the methyl groups of the β‐amino acid unit.  相似文献   

7.
Disclosed herein is the visible‐light‐promoted deaminative C(sp3)?H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional‐group tolerance provide a general strategy for the efficient preparation of unnatural α‐amino acids and precise modification of peptides with unnatural α‐amino‐acid residues. Mechanistic studies suggest that visible‐light‐promoted intermolecular charge transfer within a glycine–Katritzky salt electron donor‐acceptor (EDA) complex induces a single‐electron transfer process without the assistance of photocatalyst.  相似文献   

8.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

9.
A new member of the family of methoxylalkylamino monosubstituted β‐cyclodextrins, mono‐6A‐(4‐methoxybutylamino)‐6A‐β‐cyclodextrin, has been developed as a chiral selector for enantioseparation in capillary electrophoresis. This amino cyclodextrin exhibited good enantioselectivities for 16 model acidic racemates including three dansyl amino acids at an optimum pH of 6.0. Excellent chiral resolutions over six were obtained for α‐hydroxy acids and 2‐phenoxypropionic acids with 3.0 mM chiral selector. The good chiral recognition for α‐hydroxyl acids was attributed to inclusion complexation, electrostatic interactions, and hydrogen bonding. The hydrogen‐bonding‐enhanced chiral recognition was revealed by NMR spectroscopy. The chiral separation of acidic racemates was further improved with the addition of methanol (≤10 vol%) as an organic additive.  相似文献   

10.
New thienopyridine derivatives were synthesized by the reaction of 4‐(methylsulfanyl)‐6,7‐dihydrothieno[3,2‐c]pyridine ( 5 ) with amino acids. The use of β‐amino acids led to thienopyridopyrimidone derivatives ( 9a–g ). Using α‐amino acids, such as glycine and racemic alanine under the same reaction conditions, compounds with two thienopyridine units were obtained. The structure of the novel compounds was confirmed by IR, 13C, and 1H NMR spectroscopy, as well as mass spectrometry, along with single crystal X‐ray analysis. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:124–130, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21073  相似文献   

11.
The alkylation of unactivated β‐methylene C(sp3)? H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3)? H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

12.
As a successive work of our previous paper,^1the electron transfer matrix element(Vrp)in the oxidation of the simplified model molecule of α-amino carbon-centered radical by O2 has been investigated with ab initio calculation at the level of UHF/6-31 G**.Based on the optimized geometries of the reactgant and the ion-pair complex obtained previously,the reaction heat and the iuner reorganization energy have been obtained by constructing the potential energy curves of reactant and product states considering the solvent effect with the conductor-like screening model(COSMO).The solvent reorganization energy has been estimated using Lippert-Mataga relationship.The calculated results show that the value of Vrp is several times larger than that of RT,which means that the model reaction is an adiabatic one.Theoretical investigation indicates that the solvent effect on the direct electron transfer (ET) process of oxidation of α-amino carbon-centered radical by oxygen is remarkable.  相似文献   

13.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

14.
β‐Amino acid incorporation has emerged as a promising approach to enhance the stability of parent peptides and to improve their biological activity. Owing to the lack of reliable access to β2,2‐amino acids in a setting suitable for peptide synthesis, most contemporary research efforts focus on the use of β3‐ and certain β2,3‐amino acids. Herein, we report the catalytic asymmetric synthesis of β2,2‐amino acids and their incorporation into peptides by Fmoc‐based solid‐phase peptide synthesis (Fmoc‐SPPS). A quaternary carbon center was constructed by the palladium‐catalyzed decarboxylative allylation of 4‐substituted isoxazolidin‐5‐ones. The N?O bond in the products not only acts as a traceless protecting group for β‐amino acids but also undergoes amide formation with α‐ketoacids derived from Fmoc‐protected α‐amino acids, thus providing expeditious access to α‐β2,2‐dipeptides ready for Fmoc‐SPPS.  相似文献   

15.
Chiral α‐hydroxyl acids are of great importance in chemical synthesis. Current methods for recognizing their chirality by 1H NMR are limited by their small chemical shift differences and intrinsic solubility problem in organic solvents. Herein, we developed three YbDO3A(ala)3 derivatives to recognize four different commercially available chiral α‐hydroxyl acids in aqueous solution through 1H NMR and chemical exchange saturation transfer (CEST) spectroscopy. The shift difference between chiral α‐hydroxyl acid observed by proton and CEST NMR ranged from 15–40 and 20–40 ppm, respectively. Our work demonstrates for first time, that even one chiral center on the side‐arm chain of cyclen could set the stage for rotation of the other two non‐chiral side chains into a preferred position. This is ascribed to the lower energy state of the structure. The results show that chiral YbDO3A‐like complexes can be used to discriminate chiral α‐hydroxyl acids with a distinct signal difference.  相似文献   

16.
The synthesis and CD‐spectroscopic analysis of eleven water‐soluble β‐peptides composed of all‐β3 or alternating β2‐ and β3‐amino acids is described. Different approaches for the efficient syntheses of longer‐chain β‐peptides (>9 residues) were investigated. They were synthesized on solid phase with Fmoc‐protected amino acids or Fmoc‐protected di‐ or tripeptide fragments (assembled using solution‐phase synthesis). The use of preformed fragments significantly increased the purity of the crude peptides and facilitated purification. Especially, the use of Fmoc‐protected β2/β3‐dipeptides for the synthesis of a ‘mixed' β2/β3‐nonapeptide proved to be remarkably effective, yielding the crude peptide in 95% purity and without detectable epimerization of the β2‐amino acid residues. This is a significant improvement over previously reported procedures for the solid‐phase synthesis of β‐peptides, and foreshadows that the field of β‐peptide research will now switch from synthesis to the design and study of complex functional ‘β‐proteins'.  相似文献   

17.
Two new β3‐homohistidine‐ and β3‐homocysteine‐containing β‐peptides have been prepared by solid‐phase synthesis. A β‐octapeptide ( 2 ) contains seven β3‐amino acids and one β2‐amino acid. The β2/β3 segment has been placed in the middle of this peptide, which contains β3‐amino acids of alternating configuration, to induce the formation of a hairpin secondary structure. A β‐decapeptide ( 3 ) has been designed to fold to a 314‐helical secondary structure with neighboring His side chains in 6‐ and 9‐positions. Circular‐dichroism (CD) measurements show the capability of both peptides to bind Zn2+ ions in aqueous solution. In the case of the β‐octapeptide, binding of Zn2+ causes a dramatic change of the CD spectrum, indicating a change or a stabilization of its secondary structure. Zn2+ Ions clearly stabilize the 314‐helix of the β‐decapeptide, in neutral and basic solution. For the construction of the two new β‐peptides, we needed to have a supply of the β‐amino acid derivatives Fmoc‐β3hCys(Trt)‐OH and Fmoc‐β3hHis(Trt)‐OH, the preparation of which is described herein.  相似文献   

18.
Different cyclo‐β‐dipeptides were prepared from corresponding N‐substituted β‐alanine derivatives under mild conditions using PhPOCl2 as activating agent in benzene and Et3N as base. To evaluate β3‐substituent influence, the amino acids 7 – 26 were synthesized, and a β‐lactam formation reaction was carried out instead of cyclo‐β‐dipeptide formation. The crystal structures of three derivatives of cyclo‐β‐peptides and one β‐lactam are presented.  相似文献   

19.
The mixing enthalpies of aqueous heavy rare alkali metal chloride RbC1 solutions with aqueous α-amino acid (Loglycine, L-alanine and α-aminobutyric acid) solutions, as well as the dilution enthalpies of RbC1 and α-amino acid solutions in pure water had been measured at 298.15K. The transfer enthalpies of RbCI from pure water to aqueous α-amino acid solutions could be obtained from these data. The enthalpic pair interaction parameters of RbC1 with α-amino acid in water have been evaluated according to the McMillan-Mayer theory and discussed in terms of the electrostatic interaction, structure interaction and Savage-wood group additivity mode.  相似文献   

20.
A new radical‐based coupling method has been developed for the single‐step generation of various γ‐amino acids and α,β‐diamino acids from α‐aminoacyl tellurides. Upon activation by Et3B and O2 at ambient temperature, α‐aminoacyl tellurides were readily converted into α‐amino carbon radicals through facile decarbonylation, which then reacted intermolecularly with acrylates or glyoxylic oxime ethers. This mild and powerful method was effectively incorporated into expeditious synthetic routes to the pharmaceutical agent gabapentin and the natural product (?)‐manzacidin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号