首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltammetric behavior of Irinotecan (CPT‐11) was studied in a phosphate buffer (0.002 mol·L?1, pH 7.5) solution at the hanging mercury drop electrode (HMDE) using cyclic voltammetry (CV). CPT‐11 showed two irreversible cathodic peaks at ?1.01 V and ?1.09 V which involved two electrons and two protons in each reduction step. In addition, the interaction of Irinotecan with double‐stranded calf thymus DNA (ds‐DNA) was studied by CV at the HMDE employing an irreversible electrochemical equation. As a result of the reaction with ds‐DNA, the reduction peaks related to CPT‐11 were shifted in a negative direction and the peak currents were decreased. The diffusion coefficients of CPT‐11 in the absence (Df) and presence (Db) of ds‐DNA were calculated as 2.8×10?5 cm2·s?1 and 1.6×10?5 cm2·s?1 respectively. The binding constant (K=1.0×104 L·mol?1), and binding site size (s=0.60) of CPT‐11 interacting with ds‐DNA were obtained simultaneously by non‐linear fit analysis. The results demonstrate that the main interaction mode of CPT‐11 with ds‐DNA is electrostatic.  相似文献   

2.
《Electroanalysis》2002,14(23):1648-1653
An electrochemical equation suitable for examining the interaction of irreversible redox compounds with DNA is established. According to the equation, diffusion coefficients of both free and binding compounds (Df , Db), binding constant (K) and binding site size (s) of compounds with DNA could be obtained simultaneously by nonlinear fit analysis of electrochemical data. Bis‐benzimidazole derivative (Hoechst 33258), as an irreversible redox compound, was investigated for its electrochemical behavior and the interaction with natural fish sperm DNA (fsDNA) using cyclic voltammetry, chronocoulometry, bulk electrolysis and scanning electrochemical microscope technique. A nonlinear fit analysis of the experimental data yielded: Df=8.3×10?5 cm2 s?1, Db=6.0×10?6 cm2 s?1, K=2.1×108 cm3 mol?1, s=3.9. The overall results suggest that Hoechst 33258 binds tightly to the minor groove of fsDNA and covers four base pairs.  相似文献   

3.
The Interaction between vitamin B12 (VB12) and fish sperm DNA was investigated in physiological buffer (pH 7.4) using the methylene blue (MB) dye as a spectral probe by spetcrophotometery, viscosity measurements and cyclic voltammetry. The apparent binding constant of vitamin B12 with DNA was found to be 3.2×105 mol−1·L. The voltammetric behavior of vitamin B12 has been investigated at glassy carbon electrode using cyclic voltammetry. Thermodynamic parameters including ΔH0, ΔS0 and ΔG0 for the interaction between VB12 and DNA have determined as −2.3×104, 27.54 and −3.1×104J·mol−1·K−1 respectively. One indication of DNA binding mode with VB12 was the change in viscosity when a small molecule associates with DNA. The diffusion coefficients of VB12 in the absence (D0)f and presence of DNA (D0)b was calculated as 5.04×10−6 and 1.13×10−6 cm2·s−1 respectively. The results indicated that vitamin B12 can bind to DNA and the major binding mode was intercalative binding.  相似文献   

4.
In this paper a graphene (GR) modified carbon ionic liquid electrode (CILE) was fabricated and used as the voltammetric sensor for the sensitive detection of catechol. Due to the specific physicochemical characteristics of GR such as high surface area, excellent conductivity and good electrochemical properties, the modified electrode exhibits rapid response and strong catalytic activity with high stability toward the electrochemical oxidation of catechol. A pair of well‐defined redox peaks appeared with the anodic and the cathodic peak potential located at 225 mV and 133 mV (vs.SCE) in pH 6.5 phosphate buffer solution, respectively. Electrochemical behaviors of catechol on the GR modified CILE were carefully investigated and the electrochemical parameters were calculated with the results of the electrode reaction standard rate constant (ks) as 1.24 s?1, the charge transfer coefficient (α) as 0.4 and the electron transfer number (n) as 2. Under the selected conditions the differential pulse voltammetric peak current increased linearly with the catechol concentrations in the range from 1.0 × 10‐7 to 7.0 × 10?4mol L‐1 with the detection limit as 3.0 × 10?8mol L‐1 (3σ). The proposed method was further applied to the synthetic waste water samples determination with satisfactory results  相似文献   

5.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

6.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

7.
A high‐resolution IR diode laser in conjunction with a Herriot multiple reflection flow‐cell has been used to directly determine the rate coefficients for simple alkanes with Cl atoms at room temperature (298 K). The following results were obtained: k(Cl + n‐butane) = (1.91 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐pentane) = (2.46 ± 0.12) × 10?10 cm3 molecule?1 s?1, k(Cl + iso‐pentane) = (1.94 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + neopentane) = (1.01 ± 0.05) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐hexane) = (3.44 ± 0.17) × 10?10 cm3 molecule?1 s?1 where the error limits are ±1σ. These values have been used in conjunction with our own previous measurements on Cl + ethane and literature values on Cl + propane and Cl + iso‐butane to generate a structure activity relationship (SAR) for Cl atom abstraction reactions based on direct measurements. The resulting best fit parameters are kp = (2.61 ± 0.12) × 10?11 cm3 molecule?1 s?1, ks = (8.40 ± 0.60) × 10?11 cm3 molecule?1 s?1, kt = (5.90 ± 0.30) × 10?11 cm3 molecule?1 s?1, with f( ? CH2? ) = f (? CH2? ) = f (?C?) = f = 0.85 ± 0.06. Tests were carried out to investigate the potential interference from production of excited state HCl(v = 1) in the Cl + alkane reactions. There is some evidence for HCl(v = 1) production in the reaction of Cl with shape n‐hexane. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 86–94, 2002  相似文献   

8.
《Electroanalysis》2003,15(1):40-48
The adsorptive accumulation of cercosporin (CER) at glassy carbon electrodes is studied by square‐wave voltammetry (SWV). The Freundlich adsorption isotherm resulted in being the best one to describe the specific interaction of CER with glassy carbon electrodes by using a fitting procedure of experimental fractional surface coverage vs. the CER bulk concentration (c*CER). SWV was also used to generate Q vs. c*CER and Ip, n. vs. c*CER calibration plots from pure commercial reagent solutions. Theoretical detection limits of 1.8×10?7 and 9.7×10?8 M were calculated from Q. vs. c*CER and Ip, n vs. c*CER plots, respectively. The lowest concentration value measured experimentally from calibration plots performed at a f =40 Hz for a signal to noise ratio of 2 : 1 was 3.7×10?8 M, being this value two orders of magnitude smaller than that obtained previously by us from the diffusion controlled CER reduction peak. Ip, n./f vs. f plots from SW voltammograms performed at different c*CER as well as different accumulation times showed the so‐called “quasi‐reversible maxima”. A splitting of the voltammetric peak was also observed by increasing the SW amplitude at a given frequency. A value of (?0.260±0.011) V was determined for the formal potential of the adsorbed redox couple from the split voltammetric peak. A full characterization of the surface redox process was obtained by applying the methods of the “quasi‐reversible maximum” and the “split SW peak”. In 1 M HClO4 aqueous solution, the formal rate constant and the anodic transfer coefficient were (3.5±0.5)×102 s?1 and (0.50±0.03), respectively. Besides, the number of electrons exchanged during the redox reaction was calculated as n≈1.  相似文献   

9.
As an alternative selection of electrocatalytic surface modifier, the electrochemically generated copper oxides is re‐ investigated by using cyclic voltammetry (CV), scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Interesting phenomena have been found, which indicate that the electrodeposition from the Cu2+ solution under cyclic voltammetric conditions can generate a transparent Cu(OH)2 crystalline on the surface of glassy carbon electrodes, and this crystalline can be further transferred to a novel cubic opaque CuO crystalline of about 300 nm in size by second step of cyclic voltammetry in pH 12 NaOH solution. The final electrode (denoted as nano‐CuO/GCE) can catalyze the oxidation (as well as the reduction) of H2O2 in basic solutions. It shows pH dependent three‐part catalytic mechanism in the range from pH 7 to pH 14. In 0.10 mol/L NaOH solution, the amperometric response at 0.15 V (vs. SCE) can give a current sensitivity as high as 139 mA/(mol·L?1) in the rage of 5.0×10?7?6.0×10?4 mol/L with a lower detection limit (s/n=3) of 2.5×10?8 mol/L, and a current sensitivity of 78.4 mA/(mol·L?1) in the rage of 6.0×10?4–2.0×10?3 mol/L. This electrode also has excellent reproducibility and stability. The mechanisms for the two steps of preparation and the catalytic reactions are proposed. The nano‐CuO crystalline modified electrode may have more applications in the field of electrochemical sensing.  相似文献   

10.
汪敦佳  方正东  魏先红 《中国化学》2005,23(12):1600-1606
A new polyoxometalate (CPFX·HCl)3H4SiW12O40·10H2O was prepared from ciprofloxacin hydrochloride and H4SiW12O40·nH2O in aqueous solution, and characterized by elemental analysis, IR spectra and DTA-TG-DTG techniques. The IR spectrum confirmed the presence of Keggin structure and the characteristic functional group for ciprofloxacin in the compound. The TG-DTA-DTG curves showed that its thermal decomposition was a four-step process consisting of simultaneous collapse of Keggin type structure. The residue of decomposition was the mixture of WO3 and SiO2, confirmed by X-ray diffraction and IR spectroscopy. The decomposition mechanism and nonisothermal kinetic parameters of the polyoxometalate were obtained from an analysis to the TG-DTG curves by the single scanning methods (the Achar method and Coats-Redfern method) and the multiple scanning methods (the Kissinger method, Flynn-Wall-Ozawa method and Starink method). The results indicate that the kinetic equationswith parameters describing the thermal decomposition reaction are dα/dt=6.65×10^6[3(1-α)^2/3]e^-10495.5/T with E=87.26 kJ/mol and A=6.65×10^6 s^-1 for the second step,dα/dt=7.01×10^9(1-α)e^-18770.7/T with E=156.06 kJ/mol and A=7.01×10^9 s^-1 for the third step,dα/dt=9.77×10^43[(1-α)^2]e^-88980.0/T with E=739.78 kJ/mol and A=9.77×10^43 s^-1 for the fourth step.  相似文献   

11.
《Electroanalysis》2004,16(9):769-773
This communication reports on the electrochemical investigation of adenine on a sol‐gel carbon composite electrode (CCE). Cyclic voltammetric (CV) technique is used to characterize the redox behavior of adenine at CCE. The peak current and peak potentials are dependent on the pH of the buffer solution. From the scan rate and peak current study, there is evidence of adsorption of adenine on the CCE. The parameters affecting the differential pulse stripping adsorption peak were systematically optimized. Under optimum conditions of Eacc=?0.10 and tacc=60 s, a linear calibration plot was obtained, 2×10?7–1×10?6 M. This CCE is useful for the simultaneous analysis of adenine and guanine from denatured DNA.  相似文献   

12.
A promising electrochemical nitrite sensor was fabricated by immobilizing Au@Fe3O4 nanoparticles on the surface of L ‐cysteine modified glassy carbon electrode, which was characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The proposed sensor exhibited excellent electrocatalytic activity toward nitrite oxidation. The kinetic parameters of the electrode reaction process were calculated, (1–α)nα was 0.38 and the heterogeneous electron transfer coefficient (k) was 0.13 cm s?1. The detection conditions such as supporting electrolyte and pH value were optimized. Under the optimized conditions, the linear range for the determination of nitrite was 3.6×10?6 to 1.0×10?2 M with a detection limit of 8.2×10?7 M (S/N=3). Moreover, the as‐prepared electrode displayed good stability, repeatability and selectivity for promising practical applications.  相似文献   

13.
Square-pyramidal complexes [Cu(NFL)(A n )Cl]?·?5H2O (A n ?=?phenanthroline derivatives and NFL?=?deprotonated norfloxacin) have been synthesized and characterized. Interactions with Herring Sperm DNA and pUC19 DNA have been investigated. Mode and extent of interaction was measured by the perturbation in absorbance of complexes in the absence and presence of DNA. Hydrodynamic volume change and gel electrophoretic results were also kept under consideration. Synthesized complexes bind to DNA via intercalation with binding constant 0.875–1.446?×?104?(mol?L?1)?1 based on bathochromism and hypochromism observed. Intercalative binding of complexes with DNA was further supported by relative viscosity, where 5 intercalates more strongly with most increase in relative viscosity, and K b value of 1.446?×?104?(mol?L?1)?1. Evaluation of electrophoretic separation of plasmid on agarose gel reveals that 5 cleaves more efficiently. Square-pyramidal geometry at the metal center supports superoxide-dismutase (SOD)-mimic behavior in addition to an electron-withdrawing group on the ancillary ligand stabilizing Cu–O bonding.  相似文献   

14.
A novel biosensor by electrochemically codeposited Pt nanoclusters and DNA film was constructed and applied to detection of dopamine (DA) and uric acid (UA) in the presence of high concentration ascorbic acid (AA). Scanning electron microscopy and X‐ray photoelectron spectroscopy were used for characterization. This electrode was successfully used to resolve the overlapping voltammetric response of DA, UA and AA into three well‐defined peaks with a large anodic peak difference (ΔEpa) of about 184 mV for DA and 324 mV for UA. The catalytic peak current obtained from differential pulse voltammetry was linearly dependent on the DA concentration from 1.1× 10?7 to 3.8×10?5 mol·L?1 with a detection limit of 3.6×10?8 mol·L?1 (S/N=3) and on the UA concentration from 3.0×10?7 to 5.7×10?5 mol·L?1 with a detection limit of 1.0×10?7 mol·L?1 with coexistence of 1.0×10?3 mol·L?1 AA. The modified electrode shows good sensitivity and selectivity.  相似文献   

15.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

16.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

17.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

18.
于浩  郑建斌 《中国化学》2007,25(4):503-509
A copper hexacyanoferrate modified ceramic carbon electrode (CuHCF/CCE) had been prepared by two-step sol-gel technique and characterized using electrochemical methods. The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs. SCE) in 0.050 mol·dm^-3 HOAc-NaOAc buffer containing 0.30 mol·dm^-3 KCl. The charge transfer coefficient (a) and charge transfer rate constant (ks) for the modified electrode were calculated. The electrocatalytic activity of this modified electrode to hydrazine was also investigated, and chronoamperometry was exploited to conveniently determine the diffusion coefficient (D) of hydrazine in solution and the catalytic rate constant (kcat). Finally, hydrazine was determined with amperometry using the resulting modified electrode. The calibration plot for hydrazine determination was linear in 3.0 × 10^-6--7.5 × 10^-4 mol·dm^-3 with the detection limit of 8.0 × 10^-7 molodm^-3. This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods, such as renewable surface, good long-term stability, excellent catalytic activity and short response time to hydrazine.  相似文献   

19.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

20.
The self‐diffusion (Dc) coefficients of various lanthanum(III) diamagnetic analogues of open‐chain and macrocyclic complexes of gadolinium used as MRI contrast agents were determined in dilute aqueous solutions (3–31 mM ) by pulsed‐field‐gradient (PFG) high‐resolution 1H‐NMR spectroscopy. The self‐diffusion coefficient of H2O (Dw) was obtained for the same samples to derive the relative diffusion constant, a parameter involved in the outersphere paramagnetic‐relaxation mechanism. The results agree with an averaged relative diffusion constant of 2.5 (±0.1)×10?9 and of 3.3 (±0.1)×10?9 m2 s?1 at 25 and 37°, respectively, for 'small' contrast agents (Mr 500–750 g/mol), and with the value of bulk H2O (2.2×10?9 and 2.9×10?9 m2 s?1 at 25° and at 37°, respectively) for larger complexes. The use of the measured values of Dc for the theoretical fitting of proton NMRD curves of gadolinium complexes shows that the rotational correlation times (τR) are very close to those already reported. However, differences in the electronic relaxation time (τSO) at very low field and in the correlation time (τV) related to electronic relaxation were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号