首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously introduced the concept of “set‐complexity,” based on a context‐dependent measure of information, and used this concept to describe the complexity of gene interaction networks. In a previous paper of this series we analyzed the set‐complexity of binary graphs. Here, we extend this analysis to graphs with multicolored edges that more closely match biological structures like the gene interaction networks. All highly complex graphs by this measure exhibit a modular structure. A principal result of this work is that for the most complex graphs of a given size the number of edge colors is equal to the number of “modules” of the graph. Complete multipartite graphs (CMGs) are defined and analyzed. The relation between complexity and structure of these graphs is examined in detail. We establish that the mutual information between any two nodes in a CMG can be fully expressed in terms of entropy, and present an explicit expression for the set complexity of CMGs (Theorem 3). An algorithm for generating highly complex graphs from CMGs is described. We establish several theorems relating these concepts and connecting complex graphs with a variety of practical network properties. In exploring the relation between symmetry and complexity we use the idea of a similarity matrix and its spectrum for highly complex graphs. © 2012 Wiley Periodicals, Inc. Complexity, 2012  相似文献   

2.
3.
In this article we study Hamilton cycles in sparse pseudo‐random graphs. We prove that if the second largest absolute value λ of an eigenvalue of a d‐regular graph G on n vertices satisfies and n is large enough, then G is Hamiltonian. We also show how our main result can be used to prove that for every c >0 and large enough n a Cayley graph X (G,S), formed by choosing a set S of c log5 n random generators in a group G of order n, is almost surely Hamiltonian. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 17–33, 2003  相似文献   

4.
We study the complexity of the majority rule on planar automata networks. We reduce a special case of the Monotone Circuit Value Problem to the prediction problem of determining if a vertex of a planar graph will change its state when the network is updated with the majority rule.  相似文献   

5.
This article calls attention to flaws in the scientific enterprise, providing a case study of the lack of professionalism in published journal articles in a particular area of research, namely, network complexity. By offering details of a special case of poor scholarship, which is very likely indicative of a broader problem, the authors hope to stimulate editors and referees to greater vigilance, and to strengthen authors' resolve to take their professional responsibilities more seriously. © 2014 Wiley Periodicals, Inc. Complexity 21: 10–14, 2016  相似文献   

6.
7.
This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where . Then we show that the resulting adjacency matrix concentrates with the optimal rate: . Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: . Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017  相似文献   

8.
The Matching‐Cut problem is the problem to decide whether a graph has an edge cut that is also a matching. Previously this problem was studied under the name of the Decomposable Graph Recognition problem, and proved to be ‐complete when restricted to graphs with maximum degree four. In this paper it is shown that the problem remains ‐complete for planar graphs with maximum degree four, answering a question by Patrignani and Pizzonia. It is also shown that the problem is ‐complete for planar graphs with girth five. The reduction is from planar graph 3‐colorability and differs from earlier reductions. In addition, for certain graph classes polynomial time algorithms to find matching‐cuts are described. These classes include claw‐free graphs, co‐graphs, and graphs with fixed bounded tree‐width or clique‐width. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 109–126, 2009  相似文献   

9.
Two graphs are isomorphic only if they are Laplacian isospectral, that is, their Laplacian matrices share the same multiset of eigenvalues. Large families of nonisomorphic Laplacian isospectral graphs are exhibited for which the common multiset of eigenvalues consists entirely of integers.  相似文献   

10.
Two graphs are isomorphic only if they are Laplacian isospectral, that is, their Laplacian matrices share the same multiset of eigenvalues. Large families of nonisomorphic Laplacian isospectral graphs are exhibited for which the common multiset of eigenvalues consists entirely of integers.  相似文献   

11.
Given graphs G, H, and lists L(v) ? V(H), v ε V(G), a list homomorphism of G to H with respect to the lists L is a mapping f : V(G) → V(H) such that uv ε E(G) implies f(u)f(v) ε E(H), and f(v) ε L(v) for all v ε V(G). The list homomorphism problem for a fixed graph H asks whether or not an input graph G, together with lists L(v) ? V(H), v ε V(G), admits a list homomorphism with respect to L. In two earlier papers, we classified the complexity of the list homomorphism problem in two important special cases: When H is a reflexive graph (every vertex has a loop), the problem is polynomial time solvable if H is an interval graph, and is NP‐complete otherwise. When H is an irreflexive graph (no vertex has a loop), the problem is polynomial time solvable if H is bipartite and H is a circular arc graph, and is NP‐complete otherwise. In this paper, we extend these classifications to arbitrary graphs H (each vertex may or may not have a loop). We introduce a new class of graphs, called bi‐arc graphs, which contains both reflexive interval graphs (and no other reflexive graphs), and bipartite graphs with circular arc complements (and no other irreflexive graphs). We show that the problem is polynomial time solvable when H is a bi‐arc graph, and is NP‐complete otherwise. In the case when H is a tree (with loops allowed), we give a simpler algorithm based on a structural characterization. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 61–80, 2003  相似文献   

12.
A graph G = (V, E) is said to be weakly four‐connected if G is 4‐edge‐connected and Gx is 2‐edge‐connected for every xV. We prove that every weakly four‐connected Eulerian graph has a 2‐connected Eulerian orientation. This verifies a special case of a conjecture of A. Frank . © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 230–242, 2006  相似文献   

13.
A graph G is an odd‐circuit tree if every block of G is an odd length circuit. It is proved in this paper that the product of every pair of graphs G and H admits a nowhere‐zero 3‐flow unless G is an odd‐circuit tree and H has a bridge. This theorem is a partial result to the Tutte's 3‐flow conjecture and generalizes a result by Imrich and Skrekovski [7] that the product of two bipartite graphs admits a nowhere‐zero 3‐flow. A byproduct of this theorem is that every bridgeless Cayley graph G = Cay(Γ,S) on an abelian group Γ with a minimal generating set S admits a nowhere‐zero 3‐flow except for odd prisms. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

14.
We investigate the degree sequences of scale‐free random graphs. We obtain a formula for the limiting proportion of vertices with degree d, confirming non‐rigorous arguments of Dorogovtsev, Mendes, and Samukhin ( 14 ). We also consider a generalization of the model with more randomization, proving similar results. Finally, we use our results on the degree sequence to show that for certain values of parameters localized eigenfunctions of the adjacency matrix can be found. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

15.
16.
The eccentricity e(υ) of vertex υ is defined as a distance to a farthest vertex from υ. The radius of a graph G is defined as r(G) = {e(u)}. We consider properties of unchanging the radius of a graph under two different situations: deleting an arbitrary edge and deleting an arbitrary vertex. This paper gives the upper bounds for the number of edges in such graphs. Supported by VEGA grant No. 1/0084/08.  相似文献   

17.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

18.
《Journal of Graph Theory》2018,88(1):222-231
A well‐known theorem of Gomory and Hu states that if G is a finite graph with nonnegative weights on its edges, then there exists a tree T (now called a Gomory‐Hu tree) on such that for all there is an such that the two components of determine an optimal (minimal valued) cut between u an v in G. In this article, we extend their result to infinite weighted graphs with finite total weight. Furthermore, we show by an example that one cannot omit the condition of the finiteness of the total weight.  相似文献   

19.
20.
For each infinite cardinal κ, we give examples of 2κ many non‐isomorphic vertex‐transitive graphs of order κ that are pairwise isomorphic to induced subgraphs of each other. We consider examples of graphs with these properties that are also universal, in the sense that they embed all graphs with smaller orders as induced subgraphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 99–106, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号