首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a facile seed-mediated method for the synthesis of monodisperse polyhedral gold nanoparticles, with systematic shape evolution from octahedral to trisoctahedral structures. The control over the particle growth process was achieved simply by changing the concentration of the reductant in the growth solution, in the presence of small spherical seed nanoparticles. By progressively increasing the concentration of the reductant used in the growth solution (ascorbic acid), while keeping the amount and type of added surfactant constant, the morphology of the gold nanoparticles was varied from octahedral to truncated octahedral, cuboctahedral, truncated cubic, cubic, and finally trisoctahedral structures. These nanoparticles were monodisperse in size, possessed similar volumes, and were naturally oriented so that their larger crystal planes were face down on quartz substrates when deposited from the solution. By adjusting the volume of gold seed nanoparticle solution added to a growth solution, the size of the simplest gold nanoparticles (with a highly symmetric cubic morphology) could be tuned from 50 ± 2.1 to 112 ± 11 nm. When other seed nanoparticles were used, the size of the cubic Au nanoparticles reached 169 ± 7.0 nm. The nanoparticle growth mechanism and the plasmonic properties of the resulting polyhedral nanoparticles are discussed in this paper.  相似文献   

2.
The morphological evolution of uniform Cu(2)O nanocrystals with different morphologies in a weak acetic acid solution (pH = 3.5) has been studied for cubic, octahedral, rhombic dodecahedral, {100} truncated octahedral, and {110} truncated octahedral nanocrystals. Cu(2)O nanocrystals undergo oxidative dissolution in weak acid solution, but their morphological changes depend on the exposed crystal planes. We found that the stability of Cu(2)O crystal planes in weak acid solution follows the order of {100} ? {111} > {110} and determines how the morphology of Cu(2)O nanocrystals evolves. The stable {100} crystal planes remain, and new {100} facets form at the expense of the less stable {111} and {110} crystal planes on the surface of Cu(2)O nanocrystals. Density functional theory calculations reveal that the Cu-O bond on Cu(2)O(100) surface has the shortest bond length. These results clearly exemplify that the morphology of inorganic crystals will evolve with the change of local chemical environment, shedding light on fundamentally understanding the morphological evolution of natural minerals and providing novel insights into the geomimetic synthesis of inorganic materials in the laboratory.  相似文献   

3.
In this study, we have developed for the first time a fast and energy‐efficient method for the synthesis of PbS nanocrystals with systematic shape evolution from cubic to truncated cubic, cuboctahedral, truncated octahedral, and octahedral structures. The method involves the addition of a small volume of preheated lead acetate and thioacetamide (TAA) mixture to an aqueous growth solution of lead acetate, thioacetamide, cetyltrimethylammonium bromide, and nitric acid. By varying the amount of thioacetamide added to the growth solution, PbS nanocrystals with different morphologies were generated in 2 h at 90 °C. Slight experimental modifications were adopted to generate truncated octahedra. The nanocrystals have very uniform dimensions with average sizes of 32–47 nm. Their structures have been extensively examined by electron microscopy. Nanocube sizes can also be tuned within a range. UV/Vis absorption spectra of PbS cubes, cuboctahedra, and octahedra all show decreasing but continuous absorption from 300 nm to beyond 1000 nm. By monitoring the speed of darkening of solution color, particle growth rate was found to be fastest for nanocubes, followed by truncated cubes, cuboctahedra, and octahedra. These monodisperse nanocrystals can readily form self‐assembled structures. Truncated cubes and octahedra that form monolayer and multilayer packing arrangements have also been studied. This green approach to the synthesis of PbS nanocrystals with fine size and shape control should allow for investigations of their facet‐dependent properties and the fabrication of novel heterostructures.  相似文献   

4.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

5.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

6.
We report a simple approach for the fabrication of cuprous oxide (Cu 2O) nanocages and nanoframes possessing an unusual truncated rhombic dodecahedral structure. An aqueous solution containing CuCl 2, sodium dodecyl sulfate (SDS) surfactant, NH 2OH.HCl reductant, HCl, and NaOH was prepared, with the reagents introduced in the order listed. Rapid seed-particle aggregation and surface reconstruction of the intermediate structure resulted in the growth of type-I nanoframes, which have only {110} skeleton faces and empty {100} faces, 45 min after mixing the reagents. Continued crystal growth for additional 75 min produced nanocages with filled {100} faces. The nanocages have diameters of 350-400 nm, and their walls are thicker than those of the nanoframes. Selective acidic etching over the {110} faces of the nanocages by HCl via the addition of ethanol followed by sonication of the solution led to the formation of type-II nanoframes, which have elliptical pores on the {110} faces. The morphologies of these nanoframes were carefully examined by electron microscopy. Without addition of ethanol, random etching of the nanocages can occur at a slow rate. Octahedral gold nanocrystals and high-aspect-ratio gold nanorods were successfully encapsulated in the interiors of these Cu 2O nanocages by adding the gold nanostructures into the reaction solution. The formation process for such core-cage composite structures was studied. These composite materials should display interesting properties and functions.  相似文献   

7.
Herein, we report a facile and convenient method for the synthesis of the porous coordination polymer MOF‐14 [Cu3(BTB)2] (H3BTB=4,4′,4′′‐benzene‐1,3,5‐triyl‐tribenzoic acid) as microcrystals with definite shapes and crystal facets controlled by the reaction medium at room temperature. The amount of sodium acetate added to the reaction system plays a crucial role in the shape evolution of MOF‐14 from rhombic dodecahedrons to truncated rhombic dodecahedrons and cubes with truncated edges and then to cubes. The addition of a base could accelerate the formation rate of crystal growth and increase the supersaturation of crystal growth, thus resulting in the formation of MOF‐14 cube crystals with high‐energy crystal facets. The morphological evolution was also observed for HKUST‐1 [Cu3(BTC)2] (H3BTC=1,3,5‐benzenetricarbocylic acid) from octahedrons to cubes, thus verifying the probable mechanism of the morphological transformation. The gas‐adsorption properties of MOF‐14 with different shapes were studied and reveal that the porous coordination‐polymer microcrystals display excellent and morphology‐dependent sorption properties.  相似文献   

8.
We systematically explore the shape-dependent catalytic activities of Au nanocrystals toward glucose oxidation in alkaline electrolytes, which is strongly dependent on the shape of the Au nanocrystals. The {100}-bounded cubic Au nanocrystals are significantly more active than the {110}-bounded rhombic dodecahedral and {111}-bounded octahedral Au nanocrystals.  相似文献   

9.
Cu2O nanocubes, octahedra, spheres and truncated rhombic dodecahedral were prepared and their structural, morphological, and electronic properties were investigated by X-ray diffraction analysis, X-ray absorption near edge structure, scanning electron microscope and transmission electron microscope and X-ray absorption near edge structure. Cu2O nanocrystals were successfully employed to catalyze the 1,3-dipolar cycloaddition reaction for the synthesis of 1,4-disubstituted triazoles. Cu2O nanocubes and octahedral showed the superior catalytic performance in the cycloaddition reaction. These results reveal that crystal-plane engineering of oxide catalysts is a useful strategy for developing efficient catalysts for organic reaction.  相似文献   

10.
Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light–matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ‐Glu‐Cys and Cys‐Gly and analyzed crystallographically. The γ‐Glu‐Cys‐directed NPs present a cube‐like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys‐Gly exhibited a rhombic dodecahedron‐like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ‐Glu‐Cys generated an intermediate concave hexoctahedron morphology, while Cys‐Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys‐Gly are named 432 helicoid V because of their unique morphology and growth pathway.  相似文献   

11.
We report a facile synthesis of Au tetrahedra in high purity and with tunable, well‐controlled sizes via seed‐mediated growth. The success of this synthesis relies on the use of single‐crystal, spherical Au nanocrystals as the seeds and manipulation of the reaction kinetics to induce an unsymmetrical growth pattern for the seeds. In particular, the dropwise addition of a precursor solution with a syringe pump, assisted by cetyltrimethylammonium chloride and bromide at appropriate concentrations, was found to be critical to the formation of Au tetrahedra in high purity. Their sizes could be readily tuned in the range of 30–60 nm by simply varying the amount of precursor added to the reaction solution. The current strategy not only enables the synthesis of Au tetrahedra with tunable and controlled sizes but also provides a facile and versatile approach to reducing the symmetry of nanocrystals made of a face‐centered cubic lattice.  相似文献   

12.
Heterodimer nanostructures have attracted extensive attention, owing to an increasing degree of complexity, functionality, and then importance. So far, all the reported ones are built from solid nanoparticles. Herein, nearly monodisperse heterodimer nanostructures are constructed by hollow PbSx and solid Au domains simultaneously through a mild reaction between PbS nanocrystals and the gold species in the presence of dodecylamine. Control experiments clearly reveal the underlying formation mechanism of the hollow PbSx–solid Au heterodimers. The AuIII species in the solution, lead to the etching of PbS nanocrystals and the AuI species facilitate the control of the number of gold domains per nanoparticle. Dodecylamine molecules not only work as a stabilizer in the reaction, but also act as a reducing agent that could greatly affect the morphology of the product. The optical properties of the heterodimers are investigated based on UV/Vis absorption spectroscopy and Raman spectroscopy. This novel heterodimer nanostructure pushes the development of complex nanocrystal‐based architectures forward, and also provides many opportunities for potential applications.  相似文献   

13.
We report a general method to synthesize gold nanocrystal micelles with organo-silane headgroups. The method involves encapsulation of monodisperse, hydrophobic gold nanocrystals within the core of a micelle of an amphiphilic silane precursor. Formation and stability of monodisperse gold NC micelles have been confirmed using UV-visible spectroscopy and transmission electron microscopy. Self-assembly of such nanocrystal micelles through siloxane hydrolysis and cross-linking leads to an ordered array with a face-centered-cubic mesostructure.  相似文献   

14.
This article describes an aqueous method for the synthesis of Pd seeds with a single‐crystal structure and a uniform diameter of 3 nm and their use for the growth of Pd nanocrystals with a variety of shapes. We have also investigated the effects of a number of parameters, including the temperature, reducing power of the reductant, and capping agent on the reduction rate of a Pd precursor, and thus the final size, size distribution, and morphology of the Pd seeds. By taking advantage of the coordination effect of Br? ions with Pd2+ ions and their selective adsorption on the Pd(100) surface, Pd nanocrystals with a number of distinct shapes could be conveniently produced by varying the concentration of KBr added into the growth solution. This work provides a general and facile method for the green synthesis of Pd nanocrystals with controlled shapes, especially for the preparation of Pd nanocrystals with sizes in the sub‐10 nm regime.  相似文献   

15.
Anatase-type TiO2 single nanocrystals with boatlike, comblike, sheetlike, leaflike, quadrate, rhombic, and wirelike particle morphologies were prepared by hydrothermal treatment of a layered titanate nanosheet colloidal solution. The formation reactions and surface properties of the TiO2 nanocrystals were investigated using XRD, TEM, TG-DTA analyses, and measurements of BET specific surface area, photocatalytic activity, and ruthenium dye (N719) adsorption. The crystal morphology can be controlled by reaction temperature, pH value of reaction solution, and exfoliating agent. The titanate nanosheets were transformed to the TiO2 nanocrystals by two types of reactions. One is an in situ topotactic structural transformation reaction, and the other is a dissolution-deposition reaction on the surface. The anatase nanocrystals formed by the in situ topotactic structural transformation reaction retain the sheetlike particle morphology of the precursor, and they preferentially expose the (010) plane of anatase structure. The crystal surface of anatase nanocrystals prepared in this study showed higher photocatalytic activity and higher ruthenium dye adsorption capacity than did the Ishihara ST-01 sample, a standard anatase nanocrystal sample. The results indicated the (010) plane of the anatase structure has high photocatalytic activity and high ruthenium dye adsorption ability.  相似文献   

16.
Epitaxial Pt nanowire (NW) arrays are synthesized for the first time by a chemical vapor transport method by using a metal halide as a precursor. Here we report that the epitaxial growth direction of NWs can be steered by seed crystal morphology. Octahedral seeds grow into inclined NWs possessing six growth directions, whereas half‐octahedral seeds grow into vertical and horizontal NWs. Interfacial energies between the seed material and the substrate are critical in determining the morphology of seed crystals. We also demonstrate that non‐SERS‐active Pt NWs can show strong surface‐enhanced Raman scattering (SERS) spectra by placing them on Ag films. The active SERS observation would help to elucidate platinum‐catalyzed chemical reactions.  相似文献   

17.
The seed-mediated growth of gold nanostructures is shown to be strongly dependent on the gold seed nanocrystal structure. The gold seed solutions can be prepared such that the seeds are either single crystalline or multiply twinned. With added silver(I) in the cetyltrimethylammonium bromide (CTAB) aqueous growth solutions, the two types of seeds yield either nanorods or elongated bipyramidal nanoparticles, in good yields. The gold nanorods are single crystalline, with a structure similar to those synthesized electrochemically (Yu, Y. Y. et al. J. Phys. Chem. B 1997, 101, 6661). In contrast, the gold bipyramids are pentatwinned. These bipyramids are strikingly monodisperse in shape. This leads to the sharpest ensemble longitudinal plasmon resonance reported so far for metal colloid solutions, with an inhomogeneous width as narrow as 0.13 eV for a resonance at approximately 1.5 eV. Ag(I) plays an essential role in the growth mechanism. Ag(I) slows down the growth of the gold nanostructures. Ag(I) also leads to high-energy side facets that are {110} for the single crystalline gold nanorods and unusually highly stepped {11n} (n approximately 7) for the bipyramid. To rationalize these observations, it is proposed that it is the underpotential deposition of Ag(I) that leads to the dominance of the facets with the more open surface structures. This forms the basis for the one-dimensional growth mechanism of single crystal nanorods, while it affects the shape of the nanostructures growing along a single twinning axis.  相似文献   

18.
The three-dimensional self-assembly of a nanocrystal superlattice, i.e., a super crystal, has attracted increasing attention. The small building blocks for assemblies are usually spherical nanocrystals. Recent progress indicates that it is possible to achieve a super crystal using cubic nanocrystals. We further analyze and describe two-dimensional and some three-dimensional assemblies of uniform cubic-phase In2O3 nanocrystals with an octahedral shape. In this article, we demonstrate our amazing observations on these kinds of super crystals (or superlattices) as a model system, report their scale in at least tens of microns, and show other interesting features such as steps, terraces, kinks, and vacancies which are similar to those from a single crystal. Based on electron microscopy observations, three types of well-defined octahedral nanocrystal packed structures in such super crystal systems are also identified. The investigation of octahedral super crystal systems provides an alternate direction in research that may extend the interest of superlattice study to a broad spectrum by enriching and varying the shape of elemental building blocks. This may potentially result in new concepts and more challenging applications such as soft X-ray photonics.  相似文献   

19.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

20.
By using octahedral gold nanocrystals with sizes of approximately 50 nm as the structure-directing cores for the overgrowth of Pd shells, Au-Pd core-shell heterostructures with systematic shape evolution can be directly synthesized. Core-shell octahedra, truncated octahedra, cuboctahedra, truncated cubes, and concave cubes were produced by progressively decreasing the amount of the gold nanocrystal solution introduced into the reaction mixture containing cetyltrimethylammonium bromide (CTAB), H(2)PdCl(4), and ascorbic acid. The core-shell structure and composition of these nanocrystals has been confirmed. Only the concave cubes are bounded by a variety of high-index facets. This may be a manifestation of the release of lattice strain with their thick shells at the corners. Formation of the [CTA](2)[PdBr(4)] complex species has been identified spectroscopically. Time-dependent UV-vis absorption spectra showed faster Pd source consumption rates in the growth of truncated cubes and concave cubes, while a much slower reduction rate was observed in the generation of octahedra. The concave cubes and octahedra were used as catalysts for a Suzuki coupling reaction. They can all serve as effective and recyclable catalysts, but the concave cubes gave higher product yields with a shorter reaction time attributed to their high-index surface facets. The concave cubes can also catalyze a wide range of Suzuki coupling reactions using aryl iodides and arylboronic acids with electron-donating and -withdrawing substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号