首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop an Eulerian fixed grid numerical method for calculating multi‐material fluid flows. This approach relates to the class of interface capturing methods. The fluid is treated as a heterogeneous mixture of constituent materials, and the material interface is implicitly captured by a region of mixed cells that have arisen owing to numerical diffusion. To suppress this numerical diffusion, we propose a composite Riemann problem (CRP), which describes the decay of an initial discontinuity in the presence of a contact point between two different fluids, which is located off the initial discontinuity point. The solution to the CRP serves to calculate multi‐material no mixed numerical flux without introducing any material diffusion. We discuss the CRP solution and its implementation in the multi‐material fluid Godunov method. Numerical results show that a simple framework of the CRP greatly improves capturing material interfaces in the Godunov method and reproduces many of the advantages of more complicated interface tracking multi‐material treatments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A higher‐order unsplit multi‐dimensional discretization of the diffuse interface model for two‐material compressible flows proposed by R. Saurel, F. Petitpas and R. A. Berry in 2009 is developed. The proposed higher‐order method is based on the concepts of the Multidimensional Optimal Order Detection (MOOD) method introduced in three recent papers for single‐material flows. The first‐order unsplit multi‐dimensional Finite Volume discretization presented by SPB serves as foundation for the development of the higher‐order unlimited schemes. Specific detection criteria along with a novel decrementing algorithm for the MOOD method are designed in order to deal with the complexity of multi‐material flows. Numerically, we compare errors and computational times on several 1D problems (stringent shock tube and cavitation problems) computed on 2D meshes with the second‐ and fourth‐order MOOD methods using a classical MUSCL method as reference. Several simulations of a 2D shocked R22 bubble in the air are also presented on Cartesian and unstructured meshes with the second‐ and fourth‐order MOOD methods, and qualitative comparisons confirm the conclusions obtained with 1D problems. These numerical results demonstrate the robustness of the MOOD approach and the interest of using more than second‐order methods even for locally singular solutions of complex physics models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a new class of three‐dimensional finite difference schemes for high‐speed turbulent flows in complex geometries based on the high‐order monotonicity‐preserving (MP) method. Simulations conducted for various 1D, 2D, and 3D problems indicate that the new high‐order MP schemes can preserve sharp changes in the flow variables without spurious oscillations and are able to capture the turbulence at the smallest computed scales. Our results also indicate that the MP method has less numerical dissipation and faster grid convergence than the weighted essentially non‐oscillatory method. However, both of these methods are computationally more demanding than the COMP method and are only used for the inviscid fluxes. To reduce the computational cost for reacting flows, the scalar equations are solved by the COMP method, which is shown to yield similar results to those obtained by the MP in supersonic turbulent flows with strong shock waves. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A hybrid building‐block Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian mesh based on a building‐block grid is used as a baseline mesh to cover the computational domain, while the boundary surfaces are represented using a set of gridless points. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time‐accurate solution of the compressible Euler equations. An overall speed‐up factor from six to more than one order of magnitude and a saving in storage requirements up to one order of magnitude for all test cases in comparison with the unstructured grid method are demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a moving mesh BGK scheme (MMBGK) for multi‐material flow computations is proposed. The basic idea of constructing the MMBGK is to couple the Lagrangian method, which tracks material interfaces and keeps the interfaces sharp, with a remapping‐free ALE‐type kinetic method within each single material region, where the kinetic method is based on the BGK (Bhatnagar–Gross–Krook) model. Within each single material region, a numerical flux formulation is developed on moving meshes from motion of microscope particles, and the mesh velocity is determined by requiring both mesh adaptation for accuracy and robustness, such that the grids are moving towards to the regions with high flow gradients in a way of diffusive mechanism (velocity) to adjust the distances between neighboring cells, thus increasing the numerical accuracy. To keep the sharpness of material interfaces, the Lagrangian velocity and flux are constructed at the interfaces only. Consequently, a BGK‐scheme‐based ALE‐type method (i.e., the MMBGK scheme) for multi‐material flows is constructed. Numerical examples in one and two dimensions are presented to illustrate the accuracy and robustness of the MMBGK scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
By treating it as a contact discontinuity in the density field, a free surface between two immiscible fluids can be automatically ‘captured’ by the enforcement of conservation laws. A surface‐capturing method of this kind requires no special tracking or fitting treatment for the free surface, thereby offering the advantage of algorithm simplicity over the surface‐tracking or the surface‐fitting method. A surface‐capturing method based on a new multi‐fluid incompressible Navier–Stokes formulation is developed. It is applied to a variety of free‐surface flows, including the Rayleigh–Taylor instability problem, the ship waves around a Wigley hull and a model bubble‐rising problem to demonstrate the validity and versatility of the present method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36 :351–371) on solving a two‐fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a pressure–velocity‐based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM J. Sci. Comput. 1997; 18 (3):633—657) to enhance its robustness. The scheme can be applied to gas and liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics 2007; 225 :240–873) for spatial discretization. By defining the fluids in different regions and introducing inter‐phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and shock waves, accurately. Several benchmark tests are studied, including the Ransom's Faucet problem, 1D air–water shock tube problems, 2D shock‐water column and 2D shock‐bubble interaction problems. The results indicate that the incorporation of the new dissipation into AUSM+‐up scheme and the stratified flow model is simple, accurate and robust enough for the compressible multi‐phase flows. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Some comments are provided on the shock‐capturing techniques and stabilization parameters used in a recent paper (B.S. Kirk, Int. J. Numer. Meth. Fluids 2009; DOI: 10.1002/fld.2195 ) in conjunction with the SUPG formulation of compressible flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A novel high‐order finite volume scheme using flux correction methods in conjunction with structured finite differences is extended to low Mach and incompressible flows on strand grids. Flux correction achieves a high order by explicitly canceling low‐order truncation error terms across finite volume faces and is applied in unstructured layers of the strand grid. The layers are then coupled together using a source term containing summation‐by‐parts finite differences in the strand direction. A preconditioner is employed to extend the method to low speed and incompressible flows. We further extend the method to turbulent flows with the Spalart–Allmaras model. Laminar flow test cases indicate improvements in accuracy and convergence using the high‐order preconditioned method, while turbulent body‐of‐revolution flow results show improvements in only some cases, perhaps because of dominant errors arising from the turbulence model itself. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We propose a pressure‐based unified solver for gas‐liquid two‐phase flows where compressible and incompressible flows coexist. Unlike the original thermo–Cubic Interpolated Propagation Combined Unified Procedure (CIP‐CUP) method proposed by Himeno et al (Transactions of the Japan Society of Mechanical Engineers, Series B, 2003), we split the advection term of the governing equations into a conservation part and into the rest. The splitting of advection term has two advantages. One is the high degree of freedom in choosing discretization schemes such as central‐difference schemes, upwind schemes, and Total Variation Diminishing (TVD) schemes. The other is the ease of implementation on unstructured grids. The advantages enable the analyses of various flows such as turbulent and supersonic ones in actual complicated boundaries. Therefore, the solver is useful for practical analyses. The solver was validated on the following test cases: subsonic single‐phase flows, incompressible single‐phase turbulent flows, and incompressible gas‐liquid two‐phase flows. With unstructured grids, we obtained the equivalent results as the ones with structured grids. After the validations, subsonic jet impinging on a water pool was calculated and compared with experimental results. It was confirmed that the calculated results were consistent with the experimental ones.  相似文献   

12.
The lattice Boltzmann method (LBM) has established itself as an alternative approach to solve the fluid flow equations. In this work we combine LBM with the conventional finite volume method (FVM), and propose a non‐iterative hybrid method for the simulation of compressible flows. LBM is used to calculate the inter‐cell face fluxes and FVM is used to calculate the node parameters. The hybrid method is benchmarked for several one‐dimensional and two‐dimensional test cases. The results obtained by the hybrid method show a steeper and more accurate shock profile as compared with the results obtained by the widely used Godunov scheme or by a representative flux vector splitting scheme. Additional features of the proposed scheme are that it can be implemented on a non‐uniform grid, study of multi‐fluid problems is possible, and it is easily extendable to multi‐dimensions. These features have been demonstrated in this work. The proposed method is therefore robust and can possibly be applied to a variety of compressible flow situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Matrix‐free implicit treatments are now commonly used for computing compressible flow problems: a reduced cost per iteration and low‐memory requirements are their most attractive features. This paper explains how it is possible to preserve these features for all‐speed flows, in spite of the use of a low‐Mach preconditioning matrix. The proposed approach exploits a particular property of a widely used low‐Mach preconditioner proposed by Turkel. Its efficiency is demonstrated on some steady and unsteady applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We propose a coupling strategy for solving efficiently bifluid flows based on the Stokes equations. Our approach relies on a level set formulation of the interface‐capturing problem, and involves a finite element discretization for the fluid resolution, the method of characteristics for solving the advection of the interface and the anisotropic mesh adaptation of the computational domain in the vicinity of the interface for better accuracy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A1‐D numerical model is presented for vertically homogeneous shallow flows with variable horizontal density. The governing equations represent depth‐averaged mass and momentum conservation of a liquid–species mixture, and mass conservation of the species in the horizontal direction. Here, the term ‘species’ refers to material transported with the liquid flow. For example, when the species is taken to be suspended sediment, the model provides an idealized simulation of hyper‐concentrated sediment‐laden flows. The volumetric species concentration acts as an active scalar, allowing the species dynamics to modify the flow structure. A Godunov‐type finite volume scheme is implemented to solve the conservation laws written in a deviatoric, hyperbolic form. The model is verified for variable‐density flows, where analytical steady‐state solutions are derived. The agreement between the numerical predictions and benchmark test solutions illustrates the ability of the model to capture rapidly varying flow features over uniform and non‐uniform bed topography. A parameter study examines the effects of varying the initial density and depth in different regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An improved high‐order accurate WENO finite volume method based on unstructured grids for compressible multi‐fluids flow is proposed in this paper. The third‐order accuracy WENO finite volume method based on triangle cell is used to discretize the governing equations. To have higher order of accuracy, the P1 polynomial is reconstructed firstly. After that, the P2 polynomial is reconstructed from the combination of the P1. The reconstructed coefficients are calculated by analytical form of inverse matrix rather than the numerical inversion. This greatly improved the efficiency and the robustness. Four examples are presented to examine this algorithm. Numerical results show that there is no spurious oscillation of velocity and pressure across the interface and high‐order accurate result can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
An unstructured, shock‐fitting algorithm, originally developed to simulate steady flows, has being further developed to make it capable of dealing with unsteady flows. The present paper discusses and analyses the additional features required to extend to unsteady flows, the steady algorithm. The properties of the unsteady version of this novel, unstructured shock‐fitting technique, are tested by reference to the inviscid interaction between a vortex and a planar shock: a comparative assessment of shock‐capturing and shock‐fitting is made for the same test problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The present study addresses the capability of a large set of shock‐capturing schemes to recover the basic interactions between acoustic, vorticity and entropy in a direct numerical simulation (DNS) framework. The basic dispersive and dissipative errors are first evaluated by considering the advection of a Taylor vortex in a uniform flow. Two transonic cases are also considered. The first one consists of the interaction between a temperature spot and a weak shock. This test emphasizes the capability of the schemes to recover the production of vorticity through the baroclinic process. The second one consists of the interaction of a Taylor vortex with a weak shock, corresponding to the framework of the linear theory of Ribner. The main process in play here is the production of an acoustic wave. The results obtained by using essentially non‐oscillatory (ENO), total variation diminishing (TVD), compact‐TVD and MUSCL schemes are compared with those obtained by means of a sixth‐order accurate Hermitian scheme, considered as reference. The results are as follows; the ENO schemes agree pretty well with the reference scheme. The second‐order accurate Upwind‐TVD scheme exhibits a strong numerical diffusion, while the MUSCL scheme behavior is very sensitive to the value on the parameter β in the limiter function minmod. The compact‐TVD schemes do not yield improvement over the standard TVD schemes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
We present a new closure model for single fluid, multi‐material Lagrangian hydrodynamics and its application to high‐order finite element discretizations of these equations 1 . The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high‐order variational generalization of the method of Tipton 2 . This computation is defined by the notion of partial non‐instantaneous pressure equilibration, while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one‐dimensional two‐material problems, followed by two‐dimensional and three‐dimensional multi‐material high‐velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号