首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite film comprising of polyaniline (PANI) and single walled carbon nanotubes (SWCNT) has been fabricated onto indium‐tin‐oxide (ITO) coated glass plate using electrophoretic technique. Co‐immobilization of glycerol dehydrogenase (GDH) and lipase (LIP) has been done via N‐ethyl‐N′‐(3‐dimethylaminopropyl) carbodiimide and N‐hydroxysuccinimide chemistry to explore its application for triglyceride (tributyrin) sensing. Response studies have been done using linear sweep voltammetry revealing that LIP‐GDH/PANI‐SWCNT‐TB/ITO bioelectrode can detect tributyrin in the range of 50 to 400 mg dL?1 with low Michaelis–Menten constant of 1.138 mM, improved response time of 12 s, high sensitivity as 4.28×10?4 mA mg?1 dL and storage stability of about 13 weeks.  相似文献   

2.
Single‐walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10‐fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4±0.1 A L mol?1 cm?2 and 1500 µA cm?2, respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90 % and 60 % of its initial sensitivity to nitrite after 20 and 248 days, respectively.  相似文献   

3.
A novel single‐walled carbon nanotube (SWNT) based biosensor for real‐time detection of organophosphate has been developed. Horizontally aligned SWNTs are assembled to desirable electrodes using AC dielectrophoresis technique. Organophosphorus hydrolase (OPH) immobilized on the SWNTs by nonspecific binding triggers enzymatic hydrolysis of organophosphates (OPs), such as paraoxon, consequently causing a detectable change in the conductance of the SWNTs. The conductance change is found to be correlated to the concentration of organophosphate. Our results suggest the novel biosensor has great potential to serve as a simple and reusable platform of sensing organophosphate on a real‐time basis.  相似文献   

4.
An amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film has been reported in the present investigation. Homogeneous and stable single wall carbon nanotubes (SWNTs) and polypyrrole (PPy) multilayer films were alternately assembled on platinum coated Polyvinylidene fluoride (PVDF) membrane. Since conducting polypyrrole has excellent anti‐interference ability, protection ability in favor of increasing the amount of the SWNTs on platinum coated PVDF membrane and superior transducing ability, a layer by layer approach of polypyrrole and carbon nanotubes has provided an excellent matrix for the immobilization of enzyme. The layer‐by‐layer assembled SWNTs and PPy‐modified platinum coated PVDF membrane is shown to be an excellent amperometric sensor over a wide range of concentrations of glucose. The glucose oxidase (GOx) was immobilized on layer by layer assembled film by a physical adsorption method by cross linking through Glutaraldehyde. The glucose biosensor exhibited a linear response range from 1 mM to 50 mM of glucose concentration with excellent sensitivity of 7.06 μA/mM.  相似文献   

5.
《Electroanalysis》2005,17(1):7-14
This review addresses recent advances in carbon‐nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT‐based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic‐acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT‐modified electrodes makes these nanomaterials extremely attractive for numerous oxidase‐ and dehydrogenase‐based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic‐reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT‐based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT‐based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.  相似文献   

6.
Single‐walled carbon nanotube (SWNT) based devices have been developed for the real‐time detection of nitrophenols in aqueous solution. SWNTs are assembled to electrodes using AC dielectrophoresis technique. The SWNT devices exhibit not only high sensitivity to nitrophenol compounds, but also good reusability. Charge transfer between nitro group and SWNTs, and the metal‐nanotube interface modification are hypothesized to be the possible origins of conductance change. These results indicated that the SWNT devices can be utilized as a simple, low cost, sensitive, and reusable platform for real‐time detection of nitrophenol compounds.  相似文献   

7.
在碳纳米管(CNTs)和K3Fe(CN)6修饰的铂电极上吸附固定胆碱氧化酶,以鲁米诺为发光试剂,研制了胆碱电化学发光(ECL)生物传感器.CNTs可有效提高电极表面的电荷传输能力、提高电极表面的生物相容性和对酶分子的固载能力;K3Fe(CN)6对酶活性具有激活作用,同时对H2O2增敏的鲁米诺ECL有增强作用,均有利于提...  相似文献   

8.
A novel electrochemical biosensor design for glucosinolate determination involving bulk‐incorporation of the enzymes glucose oxidase and myrosinase into a colloidal gold ‐ multiwalled carbon nanotubes composite electrode using Teflon as binder is reported. Myrosinase catalyzes the hydrolysis of glucosinolate forming glucose, which is enzymatically oxidized. The generated hydrogen peroxide was electrochemically detected without mediator at the nanostructured composite electrode at E=+0.5 V vs. Ag/AgCl. Under the optimized conditions, the bienzyme MYR/GOx‐Aucoll‐MWCNT‐Teflon exhibited improved analytical characteristics for the glucosinolate sinigrin with respect to a biosensor constructed without gold nanoparticles, i.e. a MYR/GOx‐MWCNT‐Teflon electrode, as well as with respect to other glucosinolate biosensor designs reported in the literature. The biosensor exhibits good repeatability of the amperometric measurements and good interassay reproducibility. Furthermore, the biosensor exhibited a high selectivity with respect to various potential interferents. The usefulness of the biosensor was evaluated by the determination of glucosinolate in Brussel sprout seeds.  相似文献   

9.
A slow reaction process has been successfully used to synthesize Prussian blue/single‐walled carbon nanotubes (PB/SWNTs) nanocomposites. Electrochemical and surface characterization by cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) confirmed the presence of PB nanocrystallites on SWNTs. PB/SWNTs modified glassy carbon electrode (GCE) exhibits efficient electron transfer ability and high electrochemical response towards hydrazine. The fabricated hydrazine sensor showed a wide linear range of 2.0×10?6–6.0×10?3 M with a response time less than 4 s and a detection limit of 0.5 μM. PB/SWNTs modified electrochemical sensors are promising candidates for cost‐effective in the hydrazine assays.  相似文献   

10.
《Electroanalysis》2018,30(5):962-968
A stable complex of silver nanoparticles (Ag NPs) capped by cysteamine (Cst) together with single‐walled carbon nanotube (CNTs) was used to modify a glassy carbon electrode (GCE) for simultaneous detection of hydroquinone (HQ) and catechol (CT). The resulting electrode (AgCst‐CNTs/GCE) showed excellent electrocatalysis and reversibility towards this electroactive pair. The peak separations of their oxidation‐reduction peaks decreased significantly, compared with those of the unmodified GCE. The signal responses of the AgCst‐CNTs/GCE were 5‐fold higher while its peak potential separation remained unchanged (ca. 130 mV), compared to the CNTs‐modified GCE. The oxidation peak currents obtained for HQ and CT exhibited linearly from submicromolar to hundred micromolar concentrations without any cross‐interference. The modified electrode possessed a very large active surface area with a detection limit (S/N=3) of 10 and 40 nM for HQ and CT, respectively. The sensor was demonstrated for the analysis of river water and topical cream as evinced by high accuracy and reproducibility.  相似文献   

11.
《Electroanalysis》2006,18(12):1153-1158
We demonstrate a facile fabrication method to make chemical gas sensors using single‐walled carbon nanotubes (SWNT) electrochemically functionalized with polyaniline (PANI). The potential advantage of this method is to enable targeted functionalization with different materials to allow for creation of high‐density individually addressable nanosensor arrays. PANI‐SWNT network based sensors were tested for on‐line monitoring of ammonia gas. The results show a superior sensitivity of 2.44% ΔR/R per ppmv NH3 (which is more than 60 times higher than intrinsic SWNT based sensors), a detection limit as low as 50 ppbv, and good reproducibility upon repeated exposure to 10 ppmv NH3. The typical response time of the sensors at room temperature is on the order of minutes and the recovery time is a few hours. Higher sensitivities were observed at lower temperatures. These results indicate that electrochemical functionalization of SWNTs provides a promising new method of creating highly advanced nanosensors with improved sensitivity, detection limit, and reproducibility.  相似文献   

12.
A simple and controllable electrodeposition approach was proposed for one‐step construction of glucose biosensors by in situ co‐deposition of ferrocene‐branched chitosan derivatives (CS‐Fc), multiwalled carbon nanotubes (MWNTs), and glucose oxidase (GOD) onto electrode surface. The formation of CS‐Fc could not only effectively prevent the leakage of Fc and retain its electrochemical activity, but also provide a biocompatible microenvironment for retaining the native activity of the immobilized biomolecules. Further entrapment of MWNTs into the CS matrix improved electronic conductivity of the biocomposite significantly. The facile procedure of immobilizing GOD and the promising feature of biocomposite will offer a versatile platform to fabricate biosensors and bioelectronic devices.  相似文献   

13.
《Chemphyschem》2003,4(12):1335-1339
This article describes two‐terminal molecular switch tunnel junctions (MSTJs) which incorporate a semiconducting, single‐walled carbon nanotube (SWNT) as the bottom electrode. The nanotube interacts noncovalently with a monolayer of bistable, nondegenerate [2]catenane tetracations, self‐organized by their supporting amphiphilic dimyristoylphosphatidyl anions which shield the mechanically switchable tetracations from a two‐micrometer wide metallic top electrode. The resulting 0.002 μm2 area tunnel junction addresses a nanometer wide row of ≈2000 molecules. Active and remnant current–voltage measurements demonstrated that these devices can be reconfigurably switched and repeatedly cycled between high and low current states under ambient conditions. Control compounds, including a degenerate [2]catenane, were explored in support of the mechanical origin of the switching signature. These SWNT‐based MSTJs operate like previously reported silicon‐based MSTJs, but differently from similar devices incorporating bottom metal electrodes. The relevance of these results with respect to the choice of electrode materials for molecular electronics devices is discussed.  相似文献   

14.
Chemical functionalization of single‐walled carbon nanotubes (SWNTs) has constructed plenty of new structures with useful properties. But the modification was often confined to organic molecules, either by covalence or noncovalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: chromium hexacyanoferrate (Cr hcf). The resulting Cr hcf/SWNTs nanocomposites were confirmed by Field‐emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Cr hcf crystallites are observed to be finely attached to the SWNTs. The electrochemical properties of Cr hcf/SWNTs nanocomposites were also investigated. The nanocomposites modified glassy carbon (GC) electrode shows high electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5 μM to 10 mM (R=0.9989). In addition, the sensor has good stability and reproducibility.  相似文献   

15.
The electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA was described using a single‐walled carbon nanotube (SWCNT)/poly(vinylferrocenium) (PVF+) modified pencil graphite electrode (PGE). The electrochemical oxidation signals of guanine were monitored before and after the interaction between MC and DNA by using differential pulse voltammetry. The effects of DNA and MC concentration and MC interaction time were examined based on the electrode response. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of SWCNT/PVF+ modified and PVF+ modified PGEs. The detection limit corresponded to 625 ng/mL for MC using calf thymus double‐stranded DNA immobilized SWCNT/PVF+ modified PGE.  相似文献   

16.
A facile polymerization of an allyl‐functionalized N‐carboxyanhydride (NCA) monomer is utilized to construct an A‐B‐A‐type triblock structure containing β‐sheet‐rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single‐walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide‐based organogels.  相似文献   

17.
《Electroanalysis》2005,17(1):15-27
The rapid development in nanomaterials and nanotechnologies has provided many new opportunities for electroanalysis. We review our recent results on the fabrication and electroanalytical applications of nanoelectrode arrays based on vertically aligned multi‐walled carbon nanotubes (MWCNTs). A bottom‐up approach is demonstrated, which is compatible with Si microfabrication processes. MWCNTs are encapsulated in SiO2 matrix leaving only the very end exposed to form inlaid nanoelectrode arrays. The electrical and electrochemical properties have been characterized, showing well‐defined quasireversible nanoelectrode behavior. Ultrasensitive detection of small redox molecules in bulk solutions as well as immobilized at the MWCNT ends is demonstrated. A label‐free affinity‐based DNA sensor has shown extremely high sensitivity approaching that of fluorescence techniques. This platform can be integrated with microelectronics and microfluidics for fully automated microchips.  相似文献   

18.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

19.
For the first time, the thermodynamics are described for the formation of double‐stranded DNA (ds‐DNA)–single‐walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds‐DNAs d(A)20–d(T)20 and nuclear factor (NF)‐κB decoy. UV/Vis/near‐IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single‐stranded DNAs (ss‐DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20–d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF‐κB decoy DNA and no Tm in the ss‐DNA.  相似文献   

20.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号