首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure gradient flows. It is concluded that the present adverse pressure gradient boundary layers are far from an equilibrium state.  相似文献   

3.
A detailed numerical study using large‐eddy simulation (LES) and unsteady Reynolds‐averaged Navier–Stokes (URANS) was undertaken to investigate physical processes that are engendered in the injection of a circular synthetic (zero‐net mass flux) jet in a zero pressure gradient turbulent boundary layer. A complementary study was carried out and was verified by comparisons with the available experimental data that were obtained at corresponding conditions with the aim of achieving an improved understanding of fluid dynamics of the studied processes. The computations were conducted by OpenFOAM C++, and the physical realism of the incoming turbulent boundary layer was secured by employing random field generation algorithm. The cavity was computed with a sinusoidal transpiration boundary condition on its floor. The results from URANS computation and LES were compared and described qualitatively and quantitatively. There is a particular interest for acquiring the turbulent structures from the present numerical data. The numerical methods can capture vortical structures including a hairpin (primary) vortex and secondary structures. However, the present computations confirmed that URANS and LES are capable of predicting current flow field with a more detailed structure presented by LES data as expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Numerical prediction of locally forced turbulent boundary layer   总被引:3,自引:0,他引:3  
An unsteady numerical simulation was performed to analyze flow structure behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of a sinusoidally oscillating jet. A version of the unsteady k––fμ model [Fluid Dyn. Res. 26 (6) (2000) 421] was employed. The Reynolds number based on the momentum thickness was about Reθ=1700. The forcing frequency was varied in the range 0.011f+0.044 with a fixed forcing amplitude Ao=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally forced boundary layer flow is predicted well by the k––fμ model. The time-dependent numerical flow visualizations were demonstrated during one period of the local forcing. The effect of the pitch angle of local forcing on the reduction of skin friction was examined.  相似文献   

5.
The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are investigated. On the other hand, evaluations of predictions by LES and RANS are conducted using DNS results. The predictions of both LES and RANS almost agree with the DNS results in both cases, but the predicted temperature variances near the wall by RANS give different results as compared with DNS. This is because the dissipation rate of temperature variance is difficult to predict by the present RANS, which is found by the evaluation using DNS results.  相似文献   

6.
Oscillatory turbulent flow over a flat plate is studied using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model is employed in LES and Saffman's turbulence model is used in RANS. The flow behaviors are discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime are also investigated for different Reynolds numbers. The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China  相似文献   

7.
Hot-wire velocity measurements are carried out in a turbulent boundary layer over a rough wall consisting of transverse circular rods, with a ratio of 8 between the spacing (w) of two consecutive rods and the rod height (k). The pressure distribution around the roughness element is used to accurately measure the mean friction velocity (Uτ) and the error in the origin. It is found that Uτ remained practically constant in the streamwise direction suggesting that the boundary layer over this surface is evolving in a self-similar manner. This is further corroborated by the similarity observed at all scales of motion, in the region 0.2y/δ0.6, as reflected in the constancy of Reynolds number (Rλ) based on Taylor’s microscale and the collapse of Kolmogorov normalized velocity spectra at all wavenumbers.A scale-by-scale budget for the second-order structure function (δu)2 (δu=u(x+r)-u(x), where u is the fluctuating streamwise velocity component and r is the longitudinal separation) is carried out to investigate the energy distribution amongst different scales in the boundary layer. It is found that while the small scales are controlled by the viscosity, intermediate scales over which the transfer of energy (or (δu)3) is important are affected by mechanisms induced by the large-scale inhomogeneities in the flow, such as production, advection and turbulent diffusion. For example, there are non-negligible contributions from the large-scale inhomogeneity to the budget at scales of the order of λ, the Taylor microscale, in the region of the boundary layer extending from y/δ=0.2 to 0.6 (δ is the boundary layer thickness).  相似文献   

8.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

9.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

10.
A theoretical model for the instability of turbulent boundary layer over compliant surfaces is described. The investigation of instability is carried out from a time-asymptotic space-time perspective that classifies instabilities as either convective or absolute. Results are compared against experimental observations of surface waves on elastic and viscoelastic compliant layers.  相似文献   

11.
The modifications of a turbulent boundary layer induced by blowing through a porous plate were investigated using large-eddy simulation. The Reynolds number (based on the length of the plate) of the main flow was about 850000. Large-eddy simulations of such a boundary layer needs a turbulent inflow condition. After a review of available turbulent inflow, we describe in details the condition we developed, which consisted of recycling the velocity fluctuations. Then we show the necessity for this inflow to be non-stationary and to be three dimensional with respect to the mass conservation equation. If these properties are not achieved, we found that the velocity fluctuations do not grow as expected along the domain. Finally, the results of simulations of the boundary layer submitted to blowing are compared with experimental measurements. The good agreement obtained validate our turbulent inflow conditions and also the blowing model used. PACS 47.27.Eq, 47.27.Te, 44.20.+b  相似文献   

12.
A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.  相似文献   

13.
The wall void peaking distribution observed in an upward turbulent bubbly boundary layer along a flat plate is generated by bubbles that move towards the plate, come into contact with the wall and then slide along it. This transverse ‘migration’ has been studied using flow visualization, high speed video and particle tracking techniques to measure the trajectories of mono-disperse air bubbles at very low void fractions. Investigations have been performed at four Reynolds numbers in the range 280 < Reθ < 3000, covering both the laminar and turbulent regimes, with mono-disperse bubbles of mean equivalent diameter between 2 mm and 6 mm. Lagrangian statistics calculated from hundreds of trajectories show that the migration only occurs in the turbulent regime and for bubble diameters below some critical value: 3.5 mm < deqcrit < 4 mm. Above this size (We > 3), the interface deformation is such that bubbles do not remain at the wall, even when they are released at the surface. Also, bubble migration is shown to be non-systematic, to have a non-deterministic character in the sense that trajectories differ significantly, to increase with Reynolds number and to take place on a short time scale. A series of experiments with isolated bubbles demonstrates that these results are not influenced by bubble–bubble interactions and confirm that two-way coupling in the flow is limited. Flow visualizations show that the migration originates with the capture of bubbles inside the large turbulent structures of the boundary layer (‘bulges’). The bubbles begin to move towards the wall as they cross these structures, and the point at which they reach the wall is strongly correlated with the position of the deep ‘valleys’ which separate the turbulent ‘bulges’. The analysis of the mean Lagrangian trajectories of migrating bubbles confirms these observations. Firstly, the average time of migration calculated from these trajectories coincides with the mean transit time of the bubbles across the structures. Secondly, once the trajectories have been scaled by this transit time and the boundary layer thickness δ, they all have the same form in the region y/δ < 0.4, independent of the Reynolds number.  相似文献   

14.
The growth of two-dimensional disturbances generated in a supersonic (M = 6) boundary layer on a flat plate by a periodic perturbation of the injection/suction type is investigated on the basis of a numerical solution of the Navier-Stokes equations. For small initial perturbation amplitudes, the second-mode growth rate obtained from the numerical modeling coincides with the growth rate calculated using linear theory with account for the non-parallelism of the main flow. Calculations performed for large initial perturbation amplitudes reveal the nonlinear dynamics of the perturbation growth downstream, with rapid growth of the higher multiple harmonics.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, 2004, pp. 33–44. Original Russian Text Copyright © 2004 by Egorov, Sudakov, Fedorov.  相似文献   

15.
Two experiments were performed to study the response of a supersonic turbulent boundary layer to successive distortions. In the first experiment (Case 1), the flow passed over a forward-facing ramp formed by 20° compression corner followed by a 20° expansion corner located about 4o downstream, where o is the incoming boundary layer thickness. In the second experiment (Case 2), the forward-facing ramp was constructed of curved compression and expansion surfaces with the same turning angles and total step height as in Case 1. The radii of curvature for the compression and expansion surfaces were equal to 12o. In both experiments, the flow relaxation was observed over a distance equal to 12o. In this relaxation region, the mean and turbulent flow behavior of the boundary layer was measured. The mean velocity profile was found to be altered by the distortion. Recovery of the profile began near the wall and occurred rapidly, but in the outer part of the boundary layer, recovery proceeded slowly. Turbulence measurements revealed a dramatic reduction in the turbulence shear stress and a progressively decaying streamwise Reynolds stress profile.  相似文献   

16.
The stability and accuracy of radiation type non‐reflective outflow boundary conditions, as well as the standard Neumann boundary condition with zero normal derivative, have been compared for the numerical simulation of a turbulent axisymmetric plume with Reynolds number of 7700 and Prandtl number of 0.71. Comparison of the performance of the boundary conditions with respect to each other, and to the results obtained for an extended domain, shows that a one‐dimensional scheme in which advection and diffusion terms are included in the radiation equation is the optimum approach for the plume simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0∼4.7)×107/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30° for a sweepback angle of 67.6°. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10° and secondary separation were detected at deflection of ϑ≥20°. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements atM≥6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers. The project supported by China Academy of Launch Vehicle Technology  相似文献   

18.
A combined theoretical and experimental study is presented for the interaction between crossing shock waves generated by (10°, 10°) sharp fins and a flat plate turbulent boundary layer at Mach 8.3. The theoretical model is the full 3-D mean compressible Reynolds-averaged Navier-Stokes RANS) equations incorporating the algebraic turbulent eddy viscosity model of Baldwin and Lomax. A grid refinement study indicated that adequate resolution of the flowfield has been achieved. Computed results agree well with experiment for surface pressure and surface flow patterns and for pitot pressure and yaw angle profiles in the flowfield. The computations, however, significantly overpredict surface heat transfer. Analysis of the computed flowfield results indicates the formation of complex streamline and wave structures within the interaction region.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

19.
A high-temperature turbulent jet in a cold crossflow is investigated with the help of two scale-resolving simulation approaches. This work aims at improving the methodologies used to predict the thermal footprint of exhaust gases issuing from helicopter engines onto the fuselage. Specific attention is brought to the capability of scale resolving simulations to correctly reproduce flow dynamics and turbulent mixing. Mean flow features, turbulent quantities and temperature fields are compared and validated against wind tunnel test measurements. In addition, the present work highlights the importance of synthetic turbulence injection at pipe inlet to obtain a fair prediction of both flow dynamics and temperature field.  相似文献   

20.
The boundary layer over a drag reducing riblet surface is investigated using hot-wire anemometry and flow visualisation. The concept of a riblet sublayer is introduced, and a definition is proposed in terms of a region of reduced turbulence energy production formed near the wall by the addition of riblets. The hot wire records are examined using a modified form of quadrant analysis, and results obtained over plain and riblet surfaces are compared. Close to the wall, the addition of riblets produces a marked reduction in the occurrence of ejection (2nd quadrant) events. A corresponding increase in the incidence of sweep (4th quadrant) events is accompanied by the development of a strong tendency toward a preferred event duration, and a preferred interval between events. These changes diminish rapidly with distance from the surface, becoming almost undetectable beyondy +=40. They are discussed in the light of flow visualisation results, and interpreted in terms of mechanisms associated with the interaction between the riblets and the inner boundary layer flow structures. A conceptual model of the flow mechanisms in the riblet sublayer is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号