首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Hydraulic calculation of steady uniform flows in trapezoidal compound open channels is studied. Based on the force balance of water in each sub-section, the average velocities of the main channel, side slope, and floodplain are derived. The lateral momentum exchanges between the sub-sections are expressed by using the apparent shear stress. To verify the model, seven groups of UK Flood Channel Facility (UK-FCF) measured data with a relative water depth between the floodplain and the main channel varying from 0.057 to 0.4 are used for comparison. The result shows that the calculated velocity is larger than the measured data when the relative water depth is small, while it is less than or close to the measured value in the case of a larger relative water depth. The influence of the apparent shear stress on the calculation of velocity on the floodplain is not obvious, while it is much greater on the main channel. The three-stage model is compared with Liu’s two-stage model, showing that the former can give a better prediction for a three-stage trapezoidal compound channel. Finally, the apparent shear stress is calculated and compared with the measured data. The result shows that the chosen values of the momentum transfer coefficients are appropriate.  相似文献   

4.
环形通道内湍流旋流流动的数值模拟   总被引:1,自引:0,他引:1  
张健 N  eh  S 《计算力学学报》2000,17(1):14-21
本文应用一种考虑湍流-旋流相互作用及湍流脉动各向异性的新的代数Reynolds应力模型,对环形通道内的湍流旋流流动进行了数值模拟,研究了改主为旋流流数,进口轴向速度及半径比等参数对环形通道内湍流流动的影响,以及对强化环形通道内传热的作用。  相似文献   

5.
A simple but applicable analytical model is presented to predict the lateral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.  相似文献   

6.
The flow of water in a straight compound channel with prismatic cross section is investigated with a relatively new tool, the lattice Boltzmann method. The large eddy simulation model is added in the lattice Boltzmann model for nonlinear shallow water equations (LABSWETM) so that the turbulence, caused by lateral exchange of momentum in the shear layer between the main channel and floodplain, can be taken into account and modeled efficiently. To validate the numerical model, a symmetrical compound channel with trapezoidal main channel and flat floodplain is tested. Similar to most natural watercourses, the floodplain has higher roughness values than the main channel. Different relative depths, Dr (the ratio of the depth of flow on the floodplain to that in the main channel), are considered. The Reynolds number is set at 30 000 in the main channel. The lateral distributions of the longitudinal velocity, the boundary shear stress, the Reynolds stress and the apparent shear stress across the channel are obtained after the large eddy simulation is performed. The results of numerical simulations are compared with the available experiment data, which show that the LABSWETM is capable of modeling the features of flow turbulence in compound channels and is sufficiently accurate for practical applications in engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Numerical simulation of axisymmetric turbulent jets   总被引:1,自引:0,他引:1  
The flow in axisymmetric turbulent jets is numerically simulated with the use of a semi-empirical second-order turbulence model including differential transport equations for the normal Reynolds stresses. Calculated results are demonstrated to agree with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 55–60, September–October, 2008.  相似文献   

8.
气固两相流模拟中,当固相尺度接近或大于Kolmogorov尺度时,普通的点源模型将不再适用,固体相的体积效应和表面效应将对流体相产生显著的影响。通过采用直接数值模拟方法,结合内嵌边界方法对湍流中不同湍流强度流体横掠大于Kolmogorov尺度的固相颗粒进行了全尺度模拟,讨论分析了在两种湍流度下方形颗粒对湍流的调制影响以及颗粒的受力情况。  相似文献   

9.
A finite volume, Boltzmann Bhatnagar–Gross–Krook (BGK) numerical model for one‐ and two‐dimensional unsteady open channel flows is formulated and applied. The BGK scheme satisfies the entropy condition and thus prevents unphysical shocks. In addition, the van Leer limiter and the collision term ensure that the BGK scheme admits oscillation‐free solutions only. The accuracy and efficiency of the BGK scheme are demonstrated through the following examples: (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) one‐ and two‐dimensional dam break problems. These test cases are performed for a variety of Courant numbers (Cr), with the only condition being Cr≤1. All the computational results are free of spurious oscillations and unphysical shocks (i.e., expansion shocks). In addition, comparisons of numerical tests with measured data from dam break laboratory experiments show good agreement for Cr≤0.6. This reduction in the stability domain is due to the explicit integration of the friction term. Furthermore, BGK schemes are easily extended to multidimensional problems and do not require characteristic decomposition. The proposed scheme is second‐order in both space and time when the external forces are zero and second‐order in space but first‐order in time when the external forces are non‐zero. However, since all the test cases presented are either for zero or small values of external forces, the results tend to maintain second‐order accuracy. In problems where the external forces become significant, it is possible to improve the order of accuracy of the scheme in time by, for example, applying the Runge–Kutta method in the integration of the external forces. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The calculations of quasi‐three‐dimensional momentum equations were carried out to study the influence of wall rotation on the characteristics of an impinging jet. The pressure coefficient, the mean velocity distributions and the components of Reynolds stress are calculated. The flow is assumed to be steady, incompressible and turbulent. The finite volume scheme is used to solve the continuity equation, momentum equations and k–ε model equations. The flow characteristics were studied by varying rotation speed ω for 0?ω?167.6 rad/s, the distance from nozzle to disk (H/d) was (3, 5, 8 and 10) and the Reynolds number Re base on VJ and d was 1.45 × 104. The results showed that, the radial velocity and turbulence intensity increase by increasing the rotation speed and decrease in the impingement zone as nozzle to disk spacing increases. When the centrifugal force increases, the radial normal stresses and shear stresses increase. The location of maximum radial velocity decreases as the local velocity ratio (α) increases. The pressure coefficient depends on the centrifugal force and it decreases as the distance from nozzle to plate increases. In impingement zone and radial wall jet, the spread of flow increases as the angular velocity decreases The numerical results give good agreement with the experiment data of Minagawa and Obi (Int. J. of Heat and Fluid Flow 2004; 25 :759–766). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a two-dimensional analytical solution for compound channel flows with vegetated floodplains. The depth-integrated N-S equation is used for analyzing the steady uniform flow. The effects of the vegetation are considered as the drag force item. The secondary currents are also taken into account in the governing equations, and the preliminary estimation of the secondary current intensity coefficient K is discussed. The predicted results for the straight channels and the apex cross-section of meandering channels agree well with experimental data, which shows that the analytical model presented here can be applied to predict the flow in compound channels with vegetated floodplains.  相似文献   

12.
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame. The predicted results are compared with the experimental results and with those predicted using the wellknown EBU-Arrhenius model and the original second-order moment model. The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model, but its modeling results are in better agreement with experiments than those using other models. Hence, the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application. The project sponsored by the Foundation for Doctorate Thesis of Tsinghua University, and the National Key Project in 1999–2004 sponsored by the Ministry of Science and Technology of China  相似文献   

13.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

14.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

15.
NUMERICALSIMULATIONOFTHREEDIMENSIONALTURBULENTFLOWINSUDDENLYEXPANDEDRECTANGULARDUCTNUMERICALSIMULATIONOFTHREEDIMENSIONALTURBU...  相似文献   

16.
A 3-D free surface flow in open channels based on the Reynolds equations with thek-ε turbulence closure model is presented in this paper. Insted of the “rigid lid” approximation, the solution of the free surface equation is implemented in the velocity—pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.  相似文献   

17.
研究Birkhoff系统的一般Lie对称性导致的非Noether守恒量. 得到非Noether守恒 量的存在定理,举例说明结果的应用.  相似文献   

18.
ABSTRACT

Direct numerical simulations of temporally evolving supersonic turbulent channel flow of thermally perfect gas are conducted at Mach number 3.0 and Reynolds number 4800, combined with constant dimensional wall temperatures from 149.075 to 1788.90?K to study the influence of dimensional wall temperature on the characteristics of Reynolds stress budgets. It is found that, as the dimensional wall temperature increases, the production, diffusion, pressure–velocity gradient correlation and dissipation terms increase, whereas the compressibility-related term decreases. This is mainly due to variations in mean flow properties. The mechanism of inter-component transfer (ICT) is insensitive to the dimensional wall temperature. The ICT relating to the pressure–velocity gradient correlation term can be divided into inner and outer regions, and the critical position separating these regions is at the semi-local scaling of approximately 16 irrespective of the different dimensional wall temperature.  相似文献   

19.
Turbulent flow in a rectangular duct with a sharp 180‐degree turn is difficult to predict numerically because the flow behavior is influenced by several types of forces, including centrifugal force, pressure‐driven force, and shear stress generated by anisotropic turbulence. In particular, this type of flow is characterized by a large‐scale separated flow, and it is difficult to predict the reattachment point of a separated flow. Numerical analysis has been performed for a turbulent flow in a rectangular duct with a sharp 180‐degree turn using the algebraic Reynolds stress model. A boundary‐fitted coordinate system is introduced as a method for coordinate transformation to set the boundary conditions next to complicated shapes. The calculated results are compared with the experimental data, as measured by a laser‐Doppler anemometer, in order to examine the validity of the proposed numerical method and turbulent model. In addition, the possibility of improving the wall function method in the separated flow region is examined by replacing the log‐law velocity profile for a smooth wall with that for a rough wall. The analysis results indicated that the proposed algebraic Reynolds stress model can be used to reasonably predict the turbulent flow in a rectangular duct with a sharp 180‐degree turn. In particular, the calculated reattachment point of a separated flow, which is difficult to predict in a turbulent flow, agrees well with the experimental results. In addition, the calculation results suggest that the wall function method using the log‐law velocity profile for a rough wall over a separated flow region has some potential for improving the prediction accuracy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号