首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《Analytical letters》2012,45(11):1783-1802
Abstract

Griseofulvin is an antifungal antibiotic used to treat various pathogenic mycotic diseases. The voltammetric behavior of griseofulvin at a hanging mercury drop electrode in Britton‐Robinson buffers of pH 2–11.5 was studied and discussed. A fully validated sensitive square‐wave adsorptive cathodic stripping voltammetric procedure was described for direct determination of bulk griseofulvin substance. The procedure was based on the reduction of the >C?O double bond of griseofulvin molecule following its preconcentration onto a hanging mercury drop electrode in a Britton‐Robinson buffer of pH 10. Limits of detection (LOD) and quantitation (LOQ) of 5.8×10?10 M and 1.93×10?9 M bulk griseofulvin were achieved, respectively. The proposed stripping voltammetric procedure was successfully applied to assay griseofulvin in tablets and in spiked human serum and urine samples. LOD of 8.65×10?10 M and 6.6×10?9 M and LOQ of 2.88×10?9 M and 2.2×10?8 M griseofulvin in spiked human serum and urine samples, respectively, were achieved.  相似文献   

2.
《Analytical letters》2012,45(12):1913-1931
Abstract

A voltammetric study of the oxidation of fexofenadine HCl (FEXO) has been carried out at the glassy carbon electrode. The electrochemical oxidation of FEXO was investigated by cyclic, linear sweep, differential pulse (DPV), and square wave (SWV) voltammetry using glassy carbon electrode. The oxidation of FEXO was irreversible and exhibited diffusion‐controlled process depending on pH. The dependence of intensities of currents and potentials on pH, concentration, scan rate, nature of the buffer was investigated. Different parameters were tested to optimize the conditions for the determination of FEXO. For analytical purposes, a very well resolved diffusion‐controlled voltammetric peak was obtained in Britton‐Robinson buffer at pH 7.0 with 20% constant amount of methanol for DPV and SWV techniques. The linear response was obtained in supporting electrolyte in the ranges of 1.0×10?6–2.0×10?4 M with a detection limit of 6.6×10?9 M and 5.76×10?8 M and in serum samples in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 8.08×10?8 M and 4.97×10?8 M for differential pulse and square wave voltammetric techniques, respectively. Only square wave voltammetric technique can be applied to the urine samples, and the linearity was obtained in the ranges of 2.0×10?6–1.0×10?4 M with a detection limit of 2.00×10?7 M. Based on this study, simple, rapid, selective and sensitive two voltammetric methods were developed for the determination of FEXO in dosage forms and biological fluids. For the precision and accuracy of the developed methods, recovery studies were used. The standard addition method was used for the recovery studies. No electroactive interferences were found in biological fluids from the endogenous substances and additives present in tablets.  相似文献   

3.
《Analytical letters》2012,45(14):2693-2707
Abstract

In the present work, an adsorptive cathodic stripping voltammetric method using a hanging mercury drop electrode (HMDE) was described in order to determine the ultra trace of lead ions with carbidopa in different real samples. The method is based on accumulation of lead metal ion on mercury electrode using carbidopa as a suitable complexing agent. The potential was scanned to the negative direction and the differential pulse stripping voltammograms were recorded. The instrumental and chemical parameters were optimized. The optimized conditions were obtained in pH of 8.4, carbidopa amount of 1.0×10?6 M, accumulation potential of 0. 0 V, accumulation time of 100 s, scan rate of 100 mV/s and pulse height of 50 mV. The relationship between the peak current versus concentration was linear over the range of 2.4×10?10–4.8×10?7 M. The limits of detection were 5.8×10?11 M and the relative standard deviation at 4.8×10?10, 2.1×10?8, and 2.4×10?7 M of lead ion were obtained 3.2, 2.9, and 2.7%, respectively (n=7).  相似文献   

4.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

5.
The Cu (II) imprinted polymer glassy carbon electrode (GCE/Cu-IP) was prepared by electropolymerization of pyrrole at GCE in the presence of methyl red as a dopant and then imprinting by Cu2+ ions. This electrode was applied for potentiometric and voltammetric detection of Cu2+ ion. The potentiometric response of the electrode was linear within the Cu2+ concentration range of 3.9 × 10?6 to 5.0 × 10?2 M with a near-Nernstian slope of 29.0 mV decade?1 and a detection limit of 5.0 × 10?7 M. The electrode was also used for preconcentration anodic stripping voltammetry and results exhibited that peak currents for the incorporated copper species were dependent on the metal ion concentration in the range of 1.0 × 10?8 to 1.0 × 10?3 M and detection limit was 6.5 × 10?9 M. Also the selectivity of the prepared electrode was investigated. The imprinted polymer electrode was used for the successful assay of copper in two standard reference material samples.  相似文献   

6.
The electrochemical polymerization of glycine on carbon ionic liquid electrode (CILE) was described. The presence of ionic liquid on the surface of CILE facilitated the electropolymerization of glycine. The polyglycine modified CILE provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment. The proposed sensor not only decreased the voltammetric responses of AA but also dramatically enhanced the oxidation peak current of DA compared to bare CILE. Using square wave voltammetry, the modified CILE showed good electrochemical behavior to DA, a linear range of 1.0×10?7–3.0×10?4 M in the presence of 1 mM ascorbic acid (AA) and a detection limit of 5.0×10?9 M was estimated (S/N=3).  相似文献   

7.
《Analytical letters》2012,45(15):2835-2847
Abstract

A sensitive voltammetric method for the determination of trace boron, based on the formation of the complex of boric acid with 4‐hydroxy‐5‐[salicylideneamino]‐2‐7‐naphthalenedisulfonic acid (azomethine H) is described. The reduction of the boric acid‐azomethine H complex at a hanging mercury drop electrode was exploited by square wave voltammetry (SWV) and cyclic voltammetry to determine boron in natural water samples, which were collected in the regions surrounding the boron mines of Central Anatolia. A reduction peak that belongs to the boric acid‐azomethine H complex at this electrode was observed at ?1.05 V vs. Ag/AgCl/KCl(sat.). The effects of various parameters, such as ligand concentration, boric acid concentration, and formation time of the boric acid‐azomethine H complex, were investigated. Electrochemical experiments were conducted in 1.0 M HOAc/0.5 M NH4OAc buffer at pH of 4.4±0.2. Linear working range was established by regression analysis between 5.0×10?8 M and 1.0×10?4 M. The probable metal cation interferences in water samples were eliminated by adding EDTA (ethylenediaminetetraacetic acid) to the samples. Data obtained using the square wave voltammetric (SWV) technique was compared statistically with inductively coupled plasma mass spectroscopy (ICP‐MS) data. Evaluation of the method based on statistical data was performed and the values of the limit of detection (LOD) and limit of quantitation (LOQ) were found to be 4.17×10?6 M and 1.39×10?5 M, respectively.  相似文献   

8.
The electrochemical behavior of D ‐penicillamine (D ‐PA) studied at the surface of ferrocene carboxylic acid modified carbon paste electrode (FCAMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00), the oxidation of D ‐PA at surface of such an electrode is occurred about 420 mV less positive than that an unmodified carbon paste electrode (CPE). The catalytic oxidation peak current was linearly dependent on the D ‐PA concentration and a linear calibration curve was obtained in the ranges 7.5×10?5 M – 1.0×10?3 M and 6.5×10?6 M?1.0×10?4 M of D ‐PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 6.04×10?5 M and 6.15×10?6 M. This method was also used for the determination of D ‐PA in pharmaceutical preparation (capsules) by standard addition method.  相似文献   

9.
《Analytical letters》2012,45(2):209-219
ABSTRACT

Indirect differential pulse voltammetric (DPV) determination of aluminum in the presence of 3, 4-dihydroxyphenylalanine (L-dopa) with glass carbon electrode as working electrode has been described. The method relies on the decrease of DPV anodic peak current of L-dopa with the addition of AlIII The decreasing value of the peak current is linear with the increase of AlIII concentration. Under the optimum experimental conditions (pH 4.8, 6×10?4 M L-dopa, 0.06M NaAc - HAc 1buffer solution), the linear ranges are 4.0×10?7 - 5.2×10?6 M and 7.2×10?6 - 4.5×10?5 M. The relative standard deviation for 8×10?6 M aluminum is 1.0% (n = 8) and the detection limit is 3.5×10?7 M. A number of foreign species for interference have been studied. The method has been applied to determine aluminum in drinking water, synthetic renal dialysate and urine samples.  相似文献   

10.
A new voltammetric sensor, based on a new p-tert-butylcalix[4]arene derivative (TCAD) modified glassy carbon electrode (GCE) using Langmuir–Blodgett (LB) technique, was designed successfully and used for recognition and determination of Ag+. The π?-?A isotherms suggested that the monolayer of TCAD can coordinate with Ag+ at the air–water surface. Under the optimum experimental conditions, this voltammetric sensor shows a linear voltammetric response for Ag+ in the range of 1.0?×?10?8?~?6.0?×?10?6?mol?L?1 with detection limit 5.0?×?10?9?mol?L?1. The high sensitivity, selectivity, and stability of this LB film modified electrode also demonstrate its practical application for a simple, rapid and economical determination of Ag+ in water sample.  相似文献   

11.
A novel and simple method is proposed for the determination of tetracycline by adsorptive voltammetry in a droplet using a carbon nanotube paste rotating disk electrode (CNTP-RDE). An enhanced electrochemical oxidation response of tetracycline was observed in pH 8.2 supporting electrolyte by the addition of a long-chain cationic surfactant, such as benzyldimethyltetradecylammonium chloride (zephiramine). Under the optimized experimental conditions, the calibration curve was linear across a tetracycline concentration range from 1.0?×?10?7 to 2.0?×?10?6 M. The limit of detection and sensitivity were 4.0?×?10?8 M and 0.9358?A M?1, respectively. This method was successfully employed for the determination of tetracycline in milk samples.  相似文献   

12.
A platform based on praseodymium doped dysprosium oxide-carbon nanofibers modified electrode was constructed for the simultaneous determination of SY and TAR. SEM, EDX and XRD techniques were utilized for characterizing the proposed material. The voltammetric behaviour and properties of SY and TAR were gradually improved at materials in order from CNFs to Dy2O3−CNFs and Pr6O11@Dy2O3−CNFs. The working range was found to be 1.0×10−9–3.5×10−8 M and 1.5×10−9–4.0×10−8 M for SY and TAR, respectively. The value of LOD was 3.12×10−10 M and 5.35×10−10 M for SY and TAR, respectively. The platform (Pr6O11@Dy2O3−CNFs/GCE) was successfully applied to the electroanalysis of samples.  相似文献   

13.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

14.
ABSTRACT

In the present study, a simple, cheap and sensitive electrochemical method based on a cathodically pretreated boron-doped diamond (CPT-BDD) electrode is described for the detection of triclosan with the cationic surfactant (cetyltrimethylammonium bromide, CTAB) media. The oxidation of triclosan was irreversible and exhibited an adsorption controlled process. The sensitivity of the adsorptive stripping voltammetric measurements was significantly improved with addition of CTAB. Using square-wave stripping mode, a linear response was obtained for triclosan determination in Britton-Robinson buffer solution at pH 9.0 containing 2.5 × 10?4 M CTAB at around + 0.67 V (vs. Ag/AgCl) (after 30 s accumulation at open-circuit condition). The method could be used in the range of 0.01–1.0 μg mL?1 (3.5 × 10?8–3.5 × 10?6 M), with a detection limit of 0.0023 μg mL?1 (7.9 × 10?9 M). The feasibility of the proposed method for the determination of triclosan in water samples was checked in spiked tap water.  相似文献   

15.
《Analytical letters》2012,45(8):1711-1717
Abstract

In a solution containing 0.005M borax medium (PH= 8? 10). 0.03% ascorbic acid and 0.001% gelatin, a fine sensitive adsorptive reduction peak of manganese appeared at ?1.53v (vs.SCE) on a hanging mercury electrode by fast speed scanning voltammetry. The derivative peak current is directly proportional to the concentration of manganese in the range from 1.0×10?8M to 2.0×10?6M. The detection limit is 3.0×10?9M. Using this method, we have successfuly determined tracesof Mn in water and strawberry samples.  相似文献   

16.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

17.
Differential pulse cathodic adsorptive stripping (DPCAdSV) and square wave cathodic adsorptive stripping (SWCAdSV) voltammetric methods were developed for the determination of antimony and lead in gunshot residues. Linear working ranges for DPCAdSV and SWCAdSV methods were (2.0×10?9–5.0×10?7) M and (2.0×10?9–7.0×10?7) M for antimony and 2.0×10?9–3.0×10?7 M (both methods) for lead. The detection of antimony limits were found to be 1.3×10?9 M for DPCAdSV and 7.3×10?10 M for SWCAdSV while the corresponding values for lead were 3.0×10?9 M and 5.8×10?10 M. Antimony and lead contents obtained by these methods in gunshot residues are in good agreement with those obtained by graphite furnace atomic absorption spectrometric method within a confidence limit of 95%.  相似文献   

18.
《Electroanalysis》2004,16(20):1660-1666
The electrochemical behavior of the antibiotics rifampicin and rifamycin SV is investigated by cyclic voltammetry at carbon paste and in situ surfactant modified carbon paste electrodes. Both antibiotics adsorb on the unmodified electrodes and show a reversible redox process due to the oxidation of the 6,9‐dihydroxynaphthalene moiety to the corresponding naphthoquinone. This process is used as analytical signal for developing adsorptive voltammetric methods for the determination of the antibiotics. Experimental parameters, such as pH of the supporting electrolyte, accumulation potential and time are optimized. After accumulation from acidic solutions (0.1 M KCl pH 2 or HCl 0.2 M) at ?0.1 or 0 V for 3 min, the differential pulse oxidation peak current changes linearly with the antibiotic concentration in the range 3.5×10?10 M ?5.4×10?9 M or 5×10?11 M ?1.0×10?9 M for rifampicin and rifamycin SV, respectively. Rifamycin SV is not accumulated on carbon paste electrodes modified in situ with the anionic surfactant sodium dodecyl sulfate, whereas rifampicin is readily accumulated on this modified electrodes resulting in a signal enhancement and allowing rifampicin determinations without interference from rifamycin SV. On the other hand, selective determination of rifamycin SV in the presence of rifampicin is achieved by using carbon paste electrodes in situ modified with the cationic surfactant cetyltrimethylammonium chloride.  相似文献   

19.
A novel carbon paste electrode modified with ZrO2 nanoparticles and an ionic liquid (n-hexyl-3- methylimidazolium hexafluorophosphate) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of dopamine and uric acid is described. The electrode was also employed to study the electrochemical oxidation of dopamine and uric acid, using cyclic voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. Square wave voltammetry exhibits linear dynamic range from 1.0 × 10?6 to 9.0 × 10?4 M for dopamine. Also, square wave voltammetry exhibits linear dynamic range from 9.0 × 10?6–1.0 × 10?3 M for uric acid. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of dopamine and uric acid into two well-defined voltammetric peaks. In the mixture containing dopamine and uric acid, the two compounds can be well separated from each other with potential difference of 155 mV, which is large enough to determine dopamine and uric acid individually and simultaneously. Finally, the modified electrode was used for determination of dopamine and uric acid in real samples.  相似文献   

20.
《Electroanalysis》2018,30(5):943-954
A simple voltammetric nanosensor was described for the highly sensitive determination of antiviral drug Tenofovir. The benzalkonium chloride and silver nanoparticles were associated to build a nanosensor on glassy carbon electrode. Surface characterictics were achieved using scanning electron microscopic technique. The voltammetric measurements were performed in pH range between 1.0 and 10.0 using cyclic, adsorptive stripping differential pulse and adsorptive stripping square wave voltammetry. The linear dependence of the peak current on the square root of scan rates and the slope value (0.770) demonstrated that the oxidation of tenofovir is a mix diffusion‐adsorption controlled process in pH 5.70 acetate buffer. The linearity range was found to be 6.0×10−8–1.0×10−6 M, and nanosensor displayed an excellent detection limit of 2.39×10−9 M by square wave adsorptive stripping voltammetry. The developed nanosensor was successfully applied for the determination of Tenofovir in pharmaceutical dosage form. Moreover, the voltammetric oxidation pathway of tenofovir was also investigated at bare glassy carbon electrode comparing with some possible model compounds (Adenine and Adefovir).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号