首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

2.
A novel Eu3+ complex of Eu(DPIQ)(TTA)3 (DPIQ=10H-dipyrido [f,h] indolo [3,2-b] quinoxaline, TTA=2-thenoyltrifluoroacetonate) was synthesized and encapsulated in the mesoporous MCM-41, hoping to explore an oxygen-sensing system based on the long-lived Eu3+ emitter. The Eu(DPIQ)(TTA)3/MCM-41 composites were characterized by infrared spectra (IR), ultraviolet-visible (UV-vis) absorption spectra, small-angle X-ray diffraction (SAXRD), luminescence intensity quenching upon various oxygen concentrations, and fluorescence decay analysis. The results indicated that the composites exhibited the characteristic emission of the Eu3+ ion and the fluorescence intensity of 5D0-7F2 obviously decreased with increasing oxygen concentrations. The oxygen sensing properties of the composites with different loading levels of Eu(DPIQ)(TTA)3 complex were investigated. A sensitivity of 3.04, a short response time of 7 s, and good linearity were obtained for the composites with a loading level of 20 mg/g. These results are the best reported values for optical oxygen-sensing materials based on Eu3+ complexes so far.  相似文献   

3.
Circularly polarized luminescence (CPL) was observed from [Eu(dppda)2]? (dppda=4,7‐diphenyl‐1,10‐phenanthroline‐2,9‐dicarboxylic acid) and [Eu(pzpda)2]? (pzpda=pyrazino[2,3‐f][1,10]phenanthroline‐7,10‐dicarboxylic acid) in aqueous solutions containing various amino acids. The selectivity of these complexes towards amino acids enabled them to be used as chiral sensors and their behavior was compared with that of [Eu(pda)2]? (pda=1,10‐phenanthroline‐2,9‐dicarboxylic acid). As these EuIII complexes have achiral D2d structures under ordinary conditions, there were no CPL signals in the emission assigned to f–f transitions. However, when the solutions contained particular amino acids they exhibited detectable CPL signals with glum values of about 0.1 (glum=CPL/2 TL; TL=total luminescence). On examining 13 amino acids with these three EuIII complexes, it was found that whether an amino acid induced a detectable CPL depended on the EuIII complex ligands. For example, when ornithine was used as a chiral agent, only [Eu(dppda)2]? exhibited intense CPL in aqueous solutions of 10?2 mol dm?3. Steep amino acid concentration dependence suggested that CPL in [Eu(dppda)2]? and [Eu(pzpda)2]? was induced by the association of four or more amino acid molecules, whereas CPL in [Eu(pda)2]? was induced by association of two arginine molecules.  相似文献   

4.
Luminescence upon the grinding of solid materials (triboluminescence, TL) has long been a puzzling phenomenon in natural science and has also attracted attention because of its broad application in optics. It has been generally considered that the TL spectra exhibit similar profiles as those of photoluminescence (PL), although they occur from distinct stimuli. Herein, we describe for the first time a large spectral difference between these two physical phenomena using lanthanideIII coordination polymers with efficient TL and PL properties. They are composed of emission centers (TbIII and EuIII ions), antenna (hexafluoroacetylacetonate=hfa), and bridging ligands (2,5‐bis(diphenylphosphoryl)furan=dpf). The emission color upon grinding (yellow TL) is clearly different from that upon UV irradiation (reddish‐orange PL) in TbIII/EuIII‐mixed coordination polymers [Tb,Eu(hfa)3(dpf)]n (Tb/Eu=1). The results directly indicate the discrete excitation processes of PL and TL.  相似文献   

5.
Phenanthroline‐based hexadentate ligands L1 and L2 bearing two achiral semicarbazone or two chiral imine moieties as well as the respective mononuclear complexes incorporating various lanthanide ions, such as LaIII, EuIII, TbIII, LuIII, and YIII metal ions, were synthesized, and the crystal structures of [ML1Cl3] (M=LaIII, EuIII, TbIII, LuIII, or YIII) complexes were determined. Solvent or water molecules act as coligands for the rare‐earth metals in addition to halide anions. The big LnIII ion exhibits a coordination number (CN) of 10, whereas the corresponding EuIII, TbIII, LuIII, and YIII centers with smaller ionic radii show CN=9. Complexes of L2, namely [ML2Cl3] (M=EuIII, TbIII, LuIII, or YIII) ions could also be prepared. Only the complex of EuIII showed red luminescence, whereas all the others were nonluminescent. The emission properties of the Eu derivative can be applied as a photophysical signal for sensing various anions. The addition of phosphate anions leads to a unique change in the luminescence behavior. As a case study, the quenching behavior of adenosine‐5′‐triphosphate (ATP) was investigated at physiological pH value in an aqueous solvent. A specificity of the sensor for ATP relative to adenosine‐5′‐diphosphate (ADP) and adenosine‐5′‐monophosphate (AMP) was found. 31P NMR spectroscopic studies revealed the formation of a [EuL2(ATP)] coordination species.  相似文献   

6.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   

7.
A novel luminescent copper(I) complex with formula [Cu(PPh3)2(PIP)]BF4 (PPh3 = triphenyl phosphine, PIP = 2‐phenyl‐1H‐imidazo[4,5‐f][1,10]phenanthroline) has been synthesized and characterized by 1H NMR, IR, elemental analysis and X‐ray crystal structure analysis. In solid state, it displays broad band emission upon excitation at λ = 420 nm with the emission maximum locates at 551 nm. Its excited‐state lifetime is in the microsecond time scale (3.02 µs); as a result, its emission intensity is sensitive to oxygen concentration and shows oxygen‐sensing properties after being encapsulated into mesoporous silica MCM‐41. For the system with 60 mg/g loading level, a sensitivity (I0/I) of 4.35, a fluorescence quenching time (tQ) of 5 s and a recovery time (tR) of 36 s were achieved. Even after aging for 5 months, the sensitivities of the three loading level systems can be retained, ignoring the measurement error, which indicates that they possess long‐term stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The luminescent EuIII ion has been used to probe the metal-binding sites of bovine α-lactalbumin (BLA) in D2O. Upon addition of apo-BLA to an EuIII-containing solution, the intrinsic luminescence of the protein is quenched, and the EuIII luminescence is enhanced. Luminescent titrations point to there being at least two different metal-binding sites in the apo-protein. Curve analysis of the high resolution 5D07F0 excitation spectra reveals the existence of three different environments for the bonded EuIII ions. Two environments, labelled Ia and Ib, give 5D07F0 bands very close in energy; they contain four negatively charged groups and are assigned to one site we identify as the calcium-binding site. Site I is protected from solvent influences and is somewhat rigid, since it displays selectivity towards lanthanide ions. The origin of the two similar environments Ia and Ib could not be determined unambiguously. The third environment is ascribed to a nonspecific metal-binding site in which the EuIII ion is more exposed to the solvent (site II). It is sequentially populated after saturation of site I, and its population is pH-dependent. The affinity constant of EuIII for this site was estimated from the excitation spectra: log K2app ? 3.5(1). Assignment of the metal binding sites has been facilitated by comparison with model compounds, [Eu(dota)]? (dota ? 1,4,7,10-tetraazacyclododecane N,N′,N″, N?-tetraacetate), [Eu(dtpa)]2? (dtpa ? diethylenetriamine tetraacetate), and [Eu(bsa)] (bsa ? bovine serum albumin). The usefulness and limits of the use of curve-analysis procedures to unravel the various components of 5D07F0 excitation spectra in biological materials are also discussed.  相似文献   

9.

The influence of amide ligands on the photoluminescent behavior of tris(thenoyltrifluoroacetonate)- europium(III) in the solid state is reported. Elemental analysis showed that these compounds have the following formulas [Eu(TTA)3·(ANL)2] and [Eu(TTA)3·PZA], where ANL = acetanilide and PZA = pyrazinamide. The photoluminescence spectra of the complexes recorded in the range 420-720 nm at 77 K show narrow bands arising from the 5D07F J transitions (where J = 0-4), under excitation at 394 nm. Based on the emission spectra and luminescence decay curves the intensity parameters (Ωλ), lifetime (τ) and emission quantum efficiency (η) were determined. The Ω2 values indicate that the Eu3+ion in these complexes is in a highly polarizable chemical environment. The higher value of η (60%) obtained for the complex with the ANL ligand, in comparison with the complex with the PZA ligand (30%), indicates a more efficient deactivation of the Eu3+ion in the [Eu(TTA)3·PZA] complex.  相似文献   

10.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

11.
Novel EuIII coordination polymers [Eu(hfa)3(dpt)]n (dpt: 2,5‐bis(diphenylphosphoryl)thiophene) and [Eu(hfa)3(dpedot)]n (dpedot: 2,5‐bis(diphenylphosphoryl)ethylenedioxythiophene) with hydrogen‐bonded zipper structures are reported. The coordination polymers are composed of EuIII ions, hexafluoroacetylacetonato ligands, and thiophene‐based phosphine oxide bridges. The zig‐zag orientation of single polymer chains induced the formation of densely packed coordination structures with multiple intermolecular interactions, resulting in thermal stability above 300 °C. They exhibit a high intrinsic emission quantum yield (ca. 80 %) due to their asymmetrical and low‐vibrational coordination structures around EuIII ions. Furthermore, the characteristic alternative orientation of substituents also contributes to the dramatically high ligand‐to‐metal energy transfer efficiencies of up to 80 % in the solid state.  相似文献   

12.
Abstract  A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates. Graphical abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

14.
Hybrid materials doped with novel europium complexes were synthesized using PMMA‐co‐Sn12Clusters (copolymers from oxohydroxo‐organotin dimethacrylate and methylmethacrylate) as the matrix material. Two types of hybrid materials were obtained: the physically doped product, PMMA‐co‐Sn12Cluster/Eu(TTA)3phen, and the grafted product, PMMA‐co‐Sn12Cluster‐co‐[EuAA(TTA)2phen] (TTA=2‐thenoyltrifluoroacetone, phen=phenanthroline and AA=acrylic acid). The hybrid materials exhibited characteristic luminescence of the Eu3+ ions, and also showed relative especial optical properties compared with samples just using PMMA as the matrix material. The PMMA‐co‐Sn12Cluster matrix exhibited a high physical doping quantity of [Eu(TTA)3phen], which can be attributed to the special structure of this kind of hybrid material. GPC (gel‐permeation chromatography), TGA (thermogravimetric analysis), SEM, 1H NMR, ICP (inductively coupled plasma), 119Sn NMR, FTIR, and diffuse reflectance techniques were employed to characterize the structures and properties of these hybrid materials.  相似文献   

15.
The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.  相似文献   

16.
The structural, luminescent and temperature dependent luminescent properties of two homodinuclear europium complexes bridged by 2,2′-bipyrimidine (bpm) are reported. β-Diketonate ligands 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione (tfa) and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (tta) are used as capping ligands resulting in complexes of the form [Eu(tfa)3]2bpm (1) and [Eu(tta)3]2bpm (2). All EuIII ions are eight coordinate with six O atoms from the β-diketones and two N atoms from the polyazine bridging ligand. Excitation of the β-diketonate ligands tfa or tta at ca. 340 nm in toluene solutions results in the characteristic EuIII emission in the visible region of the spectrum. The emission intensity and lifetime associated with the EuIII centers decrease as the temperature of the solution is increased. Lifetime measurements are fit to a monoexponential while the temperature dependent lifetime data is fit to an Arrhenius-type equation. Evaluation of the data in comparison to data obtained from the monometallic EuIII analogs reveal very similar photoluminescent properties. This suggests little electronic communication between EuIII ions via the polyazine bpm bridging ligand.  相似文献   

17.
We report the preparation and characterization of dinuclear Pt–Ln complexes constructed from a square‐planar PtII core bearing an ethynyl–terpyridine residue connected to platinum by the ethynyl bond. Complexation of the neutral Eu(hfac)3 (hfac=hexafluoroacetylacetonate) fragment to free terpyridine (terpy) gives a stable bimetallic complex (log β=6.7). In the crystal structure, the flat Pt?terpy core coordinates to EuIII, which is nonacoordinated with the three nitrogen atoms of the terpy subunit and six oxygen atoms of the three hfac ligands. These atoms form a distorted monocapped square antiprism with a pseudo‐C2 symmetry axis passing through the nitrogen atom of the central pyridine ring and the Eu atom. Spectroscopic measurements showed that irradiation with visible light of wavelength up to 460 nm in the 1MLCT state of the Pt subunit resulted in a quantitative energy transfer to the Eu center, which strongly luminesces in the red with an overall luminescence quantum yield of 38 %. The energy‐transfer process is quantitative and not sensitive to oxygen, and the complexation of Eu to the Pt metallosynthon allows the recovery of the energy lost due to triplet‐oxygen quenching of the 3MLCT state observed in the uncomplexed Pt precursor.  相似文献   

18.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

19.
The UV, excitation, and luminescence spectra of tris(pivaloyltrifluoroacetonato)europium(III) ([Eu(pta)3]; Hpta=1,1,1‐trifluoro‐5,5‐dimethylhexane‐2,4‐dione=HA) were measured in the presence of bis(salicylidene)trimethylenediamine (H2saltn), bis[5‐(tert‐butyl)salicylidene]trimethylenediamine (H2(tBu)saltn), or bis(salicylidene)cyclohexane‐1,2‐diyldiamine (H2salchn), and the corresponding ZnII complexes [ZnB] (B=Schiff base). The excitation and luminescence spectra of the solution containing [Eu(pta)3] and [Zn(salchn)] exhibited much stronger intensities than those of solutions containing the other [ZnB] complexes. The introduction of a tBu group into the Schiff base was not effective in sensitizing the luminescence of [Eu(pta)3]. The luminescence spectrum of [ZnB] showed a band around 450 nm. The intensity decreased in the presence of [Eu(pta)3], reflecting complexation between [Eu(pta)3] and [ZnB]. On the basis of the change in intensity against the concentration of [ZnB], stability constants were determined for [Eu(pta)3Zn(saltn)], [Eu(pta)3Zn{(tBu)saltn}], and [Eu(pta)3Zn(salchn)] as 4.13, 4.9 and 5.56, respectively (log , where =[[Eu(pta)3ZnB]]([[Eu(pta)3]][[ZnB]])?1). The quantum yields of these binuclear complexes were determined as 0.15, 0.11, and 0.035, although [Eu(pta)3Zn(salchn)] revealed the strongest luminescence at 613 nm. The results of X‐ray diffraction analysis for [Eu(pta)3Zn(saltn)] showed that ZnII had a coordination number of five and was bridged with EuIII by three donor O‐atoms, i.e., two from the salicylidene moieties and one from the ketonato group pta.  相似文献   

20.
The superbulky deca‐aryleuropocene [Eu(CpBIG)2], CpBIG=(4‐nBu‐C6H4)5‐cyclopentadienyl, was prepared by reaction of [Eu(dmat)2(thf)2], DMAT=2‐Me2N‐α‐Me3Si‐benzyl, with two equivalents of CpBIGH. Recrystallizyation from cold hexane gave the product with a surprisingly bright and efficient orange emission (45 % quantum yield). The crystal structure is isomorphic to those of [M(CpBIG)2] (M=Sm, Yb, Ca, Ba) and shows the typical distortions that arise from CpBIG???CpBIG attraction as well as excessively large displacement parameter for the heavy Eu atom (Ueq=0.075). In order to gain information on the true oxidation state of the central metal in superbulky metallocenes [M(CpBIG)2] (M=Sm, Eu, Yb), several physical analyses have been applied. Temperature‐dependent magnetic susceptibility data of [Yb(CpBIG)2] show diamagnetism, indicating stable divalent ytterbium. Temperature‐dependent 151Eu Mössbauer effect spectroscopic examination of [Eu(CpBIG)2] was examined over the temperature range 93–215 K and the hyperfine and dynamical properties of the EuII species are discussed in detail. The mean square amplitude of vibration of the Eu atom as a function of temperature was determined and compared to the value extracted from the single‐crystal X‐ray data at 203 K. The large difference in these two values was ascribed to the presence of static disorder and/or the presence of low‐frequency torsional and librational modes in [Eu(CpBIG)2]. X‐ray absorbance near edge spectroscopy (XANES) showed that all three [Ln(CpBIG)2] (Ln=Sm, Eu, Yb) compounds are divalent. The XANES white‐line spectra are at 8.3, 7.3, and 7.8 eV, for Sm, Eu, and Yb, respectively, lower than the Ln2O3 standards. No XANES temperature dependence was found from room temperature to 100 K. XANES also showed that the [Ln(CpBIG)2] complexes had less trivalent impurity than a [EuI2(thf)x] standard. The complex [Eu(CpBIG)2] shows already at room temperature strong orange photoluminescence (quantum yield: 45 %): excitation at 412 nm (24270 cm?1) gives a symmetrical single band in the emission spectrum at 606 nm (νmax=16495 cm?1, FWHM: 2090 cm?1, Stokes‐shift: 2140 cm?1), which is assigned to a 4f65d1→4f7 transition of EuII. These remarkable values compare well to those for EuII‐doped ionic host lattices and are likely caused by the rigidity of the [Eu(CpBIG)2] complex. Sharp emission signals, typical for EuIII, are not visible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号