首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Composites of unmodified or oxidized carbon nano‐onions (CNOs/ox‐CNOs) with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X‐ray photoelectron spectroscopy characterization is performed for pristine and ox‐CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox‐CNO/PEDOT:PSS composites.  相似文献   

2.
Small carbon nano‐onions (CNOs, 6–8 shells) were prepared in high yield and functionalized with carboxylic groups by chemical oxidation. After functionalization these nanostructures were soluble in aqueous solutions. 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2 tetrazolium (MTS) tests showed excellent cytocompatibility of all CNOs analyzed at 30 and 300 μg mL?1, so these carbon nanostructures can be safely used for biological applications. The first covalent functionalization of oxidized CNOs (ox‐CNOs) with biomolecules, by using biotin–avidin interactions is reported here. Multilayers were prepared on a gold surface by layer‐by‐layer assembly and the process was monitored by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Covalent binding of molecules to the short amine‐terminated organosulfur monolayers was assessed by Fourier transform infrared spectroscopy using total attenuated reflactance mode (FT‐IR/HATR).  相似文献   

3.
Thermal annealing of nanodiamonds with diameters of a few nanometers (in an inert atmosphere and at temperatures in the range: 1500–1800 °C) leads to the formation of carbon nano‐onions (CNOs) with diameters between 5 and 6 nm, which correspond to nanostructures with six to eight graphitic layers. The resulting spherical CNO structures were thermally modified under different atmospheres and characterized by SEM, TEM, thermogravimetric analysis and spectroscopic (Raman and diffuse reflectance infrared Fourier transform/FTIR) spectroscopy. The electrochemical properties of the CNOs prepared under different conditions were determined and compared. The results reveal that the CNOs show different structures with predominant spherical “small” carbon nano‐onions. The aim of this article is to investigate the impact of the CNO′s synthesis conditions on the resulting structures and study the effect of further thermal modifications on the sizes, shapes and homogeneity of these carbon nanostructures.  相似文献   

4.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   

5.
Small multilayer fullerenes, also known as carbon nano‐onions (CNOs; 5–6 nm in diameter, 6–8 shells), show higher reactivity than other larger carbon nanostructures. Here we report the first example of an in situ polymerization of aniline on phenyleneamine‐terminated CNO surfaces. The green, protonated, conducting emeraldine polyaniline (PANI) was directly synthesized on the surface of the CNO. The functionalized and soluble CNO/PANI composites were characterized by TEM, SEM, DSC, Raman, and infrared spectroscopy. The electrochemical properties of the conducting CNO/PANI films were also investigated. In comparison with pristine CNOs, functionalized carbon nanostructures show dramatically improved solubility in protic solvents, thus enabling their easy processing for coatings, nanocomposites, and biomedical applications.  相似文献   

6.
7.
The carbon nanoparticles obtained from either arcing of graphite under water or thermal annealing of nanodiamonds are commonly called carbon nano onions (CNOs), or spherical graphite, as they are made of concentric fullerene cages separated by the same distance as the shells of graphite. A more careful analysis reveals some dramatic differences between the particles obtained by these two synthetic methods. Physicochemical methods indicate that the CNOs obtained from nanodiamonds (N‐CNOs) are smaller and contain more defects than the CNOs obtained from arcing (A‐CNOs). These properties explain the enhanced reactivity of the N‐CNOs in cycloaddition and oxidation reactions, as well as in reactions involving radicals. Given the easier functionalization of the N‐CNOs, they are the most obvious choice for studying the potential applications of these multi‐shelled fullerenes.  相似文献   

8.
A series of π‐extended distyryl‐substituted boron dipyrromethene (BODIPY) derivatives with intense far‐red/near‐infrared (NIR) fluorescence was synthesized and characterized, with a view to enhance the dye’s performance for fluorescence labeling. An enhanced brightness was achieved by the introduction of two methyl substituents in the meso positions on the phenyl group of the BODIPY molecule; these substituents resulted in increased structural rigidity. Solid‐state fluorescence was observed for one of the distyryl‐substituted BODIPY derivatives. The introduction of a terminal bromo substituent allows for the subsequent immobilization of the BODIPY fluorophore on the surface of carbon nano‐onions (CNOs), which leads to potential imaging agents for biological and biomedical applications. The far‐red/NIR‐fluorescent CNO nanoparticles were characterized by absorption, fluorescence, and Raman spectroscopies, as well as by thermogravimetric analysis, dynamic light scattering, high‐resolution transmission electron microscopy, and confocal microscopy.  相似文献   

9.
Facile functionalization of multilayer fullerenes (carbon nano‐onions, CNOs) was carried out by [2+1] cycloaddition of nitrenes. The products were further derivatized by using the “grafting from” strategy of in situ ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Using one‐step nitrene chemistry with high‐energy reagents, such as azidoethanol and azidoethyl 2‐bromo‐2‐methyl propanoate, in N‐methyl‐2‐pyrrolidone at 160°C for 16 h, hydroxyl and bromide functionalities were introduced onto the surfaces of CNOs. These hydroxyl CNOs (CNO‐OH) and bromic CNOs (CNO‐Br) were extensively characterized by various techniques such as thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), Raman spectroscopy and X‐ray photo electron spectroscopy (XPS). TGA measurements indicated that the surface hydroxyl and bromide group density reached 1.49 and 0.49 mmol g?1, respectively. The as‐functionalized CNOs showed much better solubility in solvents than pristine CNOs. The CNO‐OH were also observed to fluoresce at λ=453 nm in water. The CNO‐OH and CNO‐Br can be conveniently utilized as macroinitiators to conduct surface‐initiated in‐situ polymerizations. Poly(ε‐caprolactone) (PCL, 45wt %) and polystyrene (PS, 60 wt%) were then grafted from surfaces of CNOs through the ROP of ε‐caprolactone with the macroinitiator CNO‐OH and the ATRP of styrene with the macroinitiator CNO‐Br, respectively. The structures and morphology of the resulting products were characterized by 1H NMR, scanning electron microscopy (SEM), TEM, and atomic force microscopy (AFM). The polymer functionalized CNOs have good solubility/dispersibility in common organic solvents. The facile and scalable functionalization approaches can pave the way for the comprehensive investigation of chemistry of CNOs and fabrication of novel CNO‐based nanomaterials and nanodevices.  相似文献   

10.
Don't cry! The attachment of ferrocene moieties on the surface of carbon nano‐onions influences the electrochemical properties of these moieties and the photophysical properties of the carbon nano‐onions (see figure). Quantum chemical calculations confirm that the spectral properties of carbon nano‐onions depend on their size and the degree of functionalisation.

  相似文献   


11.
Interactions between the π bonds in the aromatic rings of polyaniline (PANI) with carbon nanostructures (CNs) facilitate charge transfer between the two components. Different types of phenyleneamine‐terminated CNs, including carbon nano‐onions (CNOs) and single‐walled and multi‐walled carbon nanotubes (SWNTs and MWNTs, respectively), were prepared as templates, and the CN/PANI nanocomposites were easily prepared with uniform core–shell structures. By varying the ratio of the aniline monomers relative to the CNs in the in situ chemical polymerization process, the thickness of the PANI layers was effectively controlled. The morphological and electrical properties of the nanocomposite were determined and compared. The thickness and structure of the PANI films on the CNs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and infrared spectroscopy. TEM and SEM revealed that the composite films consisted of nanoporous networks of CNs coated with polymeric aniline. The electrochemical properties of the composites were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. These studies showed that the CN/PANI composite films had lower resistance than pure polymeric films of PANI, and the presence of CNs much improved the mechanical stability. The specific electrochemical capacitance of the CNO/PANI composite films was significantly larger than for pure PANI.  相似文献   

12.
For the first time we report on the electrochemical characteristics of nanometer sized polyhedral graphite onions dispersed amongst arc‐MWCNTs. These are formed during the electric arc discharge method of producing ultrapure MWCNTs (arc‐MWCNTs). The carbon onions are randomly dispersed amongst the arc‐MWCNTs which are produced with very little amorphous carbon deposits or other unwanted impurities and are formed as closed‐ended tubes. By comparison with commercially available open‐ended hollow‐tube multiwalled carbon nanotubes made using the chemical vapor deposition method (cvd‐MWCNTs), a glassy carbon electrode (GCE), an edge‐plane pyrolytic graphite electrode (eppg) and basal plane pyrolytic graphite (bppg) electrode, we can speculate that it is the edge‐plane‐like defect sites that are the electroactive sites responsible for the apparent ‘electrocatalysis’ seen with a wide range of analytes including: ferrocyanide, ruthenium hexaamine(III), nicotinamide adenosine dinucleotide (NADH), epinephrine, norepinephrine, cysteine, and glutathione. The arc‐MWCNTs themselves are produced as closed‐ended tubes with very few, if any, edge‐plane‐like defect sites evident in their HRTEM characterization. Therefore we speculate that it is the carbon onions dispersed amongst the arc‐MWCNTs which have incomplete graphite shells or a rolled‐up ‘Swiss‐roll’ structures that posses the edge‐plane‐like defect sites and are responsible for the observed voltammetric responses. Carbon onions are no more or no less ‘electrocatalytic’ than open‐ended MWCNTs which in turn are no more electrocatalytic than an eppg electrode. As the carbon onions are ubiquitous in MWCNTs formed using the arc‐discharge method the authors advise that caution should be taken before assigning any electrocatalytic behavior to the MWCNTs themselves as any observed electrocatalysis likely arises from the carbon onion impurities.  相似文献   

13.
A redox polymer (PAHA‐Ru), modified electrode exhibited excellent catalytic activity for the electrochemical oxidation of β‐nicotinamide adenine dinucleotide (NADH). PAHA‐Ru was composed of carboxyl groups and ruthenium complexes containing 1,10‐phenanthroline‐5,6‐dione (phen‐dione). The stability of the PAHA‐Ru film was increased by incorporating poly(diallyldimethylammonium chloride) (PDDA) owing to the formation of a polyelectrolyte complex between the PAHA‐Ru and PDDA. The catalytic efficiency of the oxidation of NADH using the PAHA‐Ru/PDDA‐modified electrode was also greater than that using a PAHA‐Ru‐modified electrode. NAD‐dependent alcohol dehydrogenase (ADH) was entrapped in the PAHA‐Ru/PDDA film on the surface of the glassy carbon electrode. Electrochemical oxidation of ethanol using the ADH‐entrapped electrode was also observed.  相似文献   

14.
We report that nano‐emulsions can be creatively used as a morphology selective synthesis method to prepare not only nano‐grains but also nano‐fibers with high selectivity. Synthesis of the two different morphological materials was demonstrated using polyaniline synthesis as a model case. Polyaniline nano‐grains were synthesized from aniline molecules in nano‐size aqueous droplets as polymerization sites whose droplets were generated by inverse water‐in‐oil nano‐emulsion use, and polyaniline nano‐fibers were synthesized from aniline in aqueous nano‐dimensional channels as polymerization sites whose channels were generated by direct oil‐in‐water nano‐emulsion use containing high population of oil droplets. Using the approaches, we successfully synthesized nano‐fibers of 60 nm diameter with 0.5 µm length and also nano‐grains having diameter of 60–80 nm. The two different polymerization sites of nano‐scale dimension were made by changing the ratio among surfactant, aqueous aniline/HCl solution, and oil, i.e. organic solvent. We found the nano‐fibers synthesized from the channels formed by the direct oil‐in‐water nano‐emulsion have higher bulk electrical conductivity than the nano‐grains which were synthesized from the droplets formed by the inverse water‐in‐oil emulsion. We also found that the emulsion use allows us to use a room temperature synthesis unlike conventional synthesis methods which require to use ice bath temperature. Physical properties of both nano‐fibers and nano‐grains synthesized were characterized by Fourier transform infrared (FTIR), UV–Vis spectra, scanning electron microscopy (SEM), and four probes conductivity measurement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
《Electroanalysis》2017,29(10):2401-2409
Copper nanoparticles (nano‐Cu) were electrodeposited on the surface of glassy carbon electrode (GCE) potentiostatically at −0.6 V vs. Ag/AgCl for 60 s. The developed nano‐copper modified glassy carbon electrode (nano‐Cu/GCE) was optimized and utilized for electrochemical assay of chemical oxygen demand (COD) using glycine as a standard. The surface morphology and chemical composition of nano‐Cu/GCE were investigated using scanning electron microscope (SEM) and energy dispersive X‐ray spectrometer (EDX), respectively. The electrochemical behavior was investigated using linear sweep voltammetry (LSV) which is characterized by a remarkable anodic peak at ∼0.6 V, compared to bare GCE. This indicates that nano‐Cu enhances significantly the electrochemical oxidation of glycine. The effect of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the developed sensor were investigated. The optimized nano‐Cu/GCE based COD sensor exhibited a linear range of 15 to 629.3 ppm, and a lower limit of detection (LOD) of 1.7 ppm (S/N=3). This developed method exhibited high tolerance level to chloride ion (0.35 M chloride ion has minimal influence). The analytical utility of the prepared COD sensor was demonstrated by investigating the COD recovery (99.8±4.3) and the assay of COD in different water samples. The results obtained were verified using the standard dichromate method.  相似文献   

16.
The hydrophobic ionic liquid N‐butyl‐N‐methylpyrrolidinium bis((trifluoromethyl)sulfonyl)amide (BMP‐TFSA IL), which contains a series of flexible ionophores of polypyridine‐type small molecules or two rigid ionophores of peripherally pyridine‐modified PAMAM dendrimers, was used to extract cupric ions from aqueous solutions. The polypyridine‐type ionophores show good selectivity toward cupric ions at pH 2. The selectivity is affected by the spacing between the two amino groups. However, the pyridine‐modified dendrimers showed poor selectivity, although their extraction efficiency still depended on the pH of the aqueous solution. The ionic liquids that contained small molecular ionophores and their dendrimer analogs were reused after acid washing or electrochemical reduction. During acid washing, the nitrogen atoms of the ionophores were protonated to release the cupric ions into the aqueous phase, and the copper atoms were deposited onto the electrode surface during the electrochemical reduction accompanied by the regeneration of the ionophores.  相似文献   

17.
Enzyme‐based electrochemical biosensors with sufficient sensing specificity are useful analytical tools for detection of biologically important substances in complicated systems. Here, we present the design of a nano‐hybrid biosensor for the specific and sensitive detection of methyl parathion (MP). The nano‐hybrid sensing film was prepared via the formation of Au nanoparticals (AuNPs) on silica nanoparticles (SiNPs), mixing with multiwall carbon nanotube (MWNTs) and subsequent immobilization of methyl parathion degrading enzyme (MPD). The fabrication procedure was characterized by scanning electron images, linear scan voltammetry and electrochemical impedance spectroscopy. The combined MPD exhibited high affinity to it substrate and thus a selective, sensitive, fast and cheap method for determination of MP, quantitatively was proposed. A significant synergistic effect of nano‐hybrid on the biosensor performance was observed in biosensing MP. The square wave voltammetric responses displayed well defined peaks, linearly proportional to the concentration of MP in the range from 0.001 to 5.0 μg/mL with a detection limit of 0.3 ng/mL. The proposed biosensor also showed good precision and reproducibility, acceptable stability and accuracy in garlic samples analysis. It provided a platform for the simple and fast construction of biosensors with good performance for the determination of enzyme‐specific electroactive species.  相似文献   

18.
Nanocomposite membranes, prepared from carbon nano‐powders (CnP) or carbon nano‐fibers (CnF) dispersions in polystyrene sulfonate (PSS), were evaluated as sensing platforms. Composite surfaces were analyzed by scanning electron microscopy and field‐emission electron microscopy. Electrical and electrochemical properties of composite membranes were evaluated. Percolation threshold was reached at percentages higher than 5 % CnP or 0.5 % CnF. Best electrochemical responses were obtained on electrodes modified with composites containing 10 % CnP and 1 % CnF. Using a PSS‐10 % CnP composite modified electrode, a limit of detection of 0.3 µg L?1 (1 nM) was obtained in lead determination by differential pulse anodic stripping voltammetry.  相似文献   

19.
Glassy carbon electrode (GCE) were modified with nanocomposites containing conductive polyaniline nanotubes (PANInt) and carbon nano-onions (CNOs). Herein we report a simple and sensitive way for daidzein (DA) determination at concentrations between 1 and 10 μM by linear sweep voltammetry using GCE/PANInt/CNOs system. The DA electrochemical behavior was examined in two buffer environments (pH 7.5 and 4.5) using electrodes modified with the oxidized CNOs or their derivatives containing carboxyl and benzylamino functional groups. The direct electrooxidation of DA was observed at +0.65 V and +0.8 V at pH 7.5 and at +0.7 V and +1.1 V vs. Ag/AgCl at pH 4.5.  相似文献   

20.
The synthesis and self‐assembly properties in aqueous solutions of novel amphiphilic block copolymers composed of one hydrophobic poly (lauryl methacrylate), (PLMA) block and one hydrophilic poly (oligo ethylene glycol methacrylate) (POEGMA) block are reported. The block copolymers were prepared by RAFT polymerization and were molecularly characterized by size exclusion chromatography, NMR and FT‐IR spectroscopy, and DSC. The PLMA‐b‐POEGMA amphiphilic block copolymers self‐assemble in nanosized complex nanostructures resembling compound micelles when inserted in aqueous media, as supported by light scattering and TEM measurements. The encapsulation and release of the model, hydrophobic, nonsteroidal anti‐inflammatory drug indomethacin in the polymeric micelles is also investigated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 155–163  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号